Домой / Утепление жилища / Геологический цикл формирования горных пород. I

Геологический цикл формирования горных пород. I

В науке есть проблемы, которых нельзя решить усилиями одной какой-нибудь отрасли знания, а только совместными усилиями ряда смежных научных дисциплин.

В геологии к числу таковых принадлежит не только проблема движения материков, но и проблема о связи циклов развития нашей планеты с ее движением. С одной стороны, движение как нашей, так и других планет изучается астрономией, с другой, рассказать о циклах жизни планеты в истории Земли правильнее всего может геолог.

Ясно из этого, что при сопоставлении этих двух явлений совершенно неизбежно приходится воспользоваться данными геологии и астрономии. Однако нетрудно показать, что усилий этих двух наук совершенно недостаточно.

Когда на протяжении геологического времени осуществляются и развертываются геологические циклы, ход их развития определяется физической природой вращающегося тела планеты, поэтому при изучении данного вопроса необходимо также участие и геофизики. Далее, в связи с тем, что Земля и в особенности ее кора - это мозаика разнообразных веществ, потребуется участие и геохимической науки, и, наконец, своя точка зрения на эту проблему существует у механики. Словом, большая и сложная проблема о взаимоотношении геологических циклов с движением Земли, и в частности с ее вращением, требует совместной работы нескольких научных дисциплин. Мы это далее рассмотрим с позиций геологии, однако с учетом достижений ряда других отраслей знания.

До очень недавнего сравнительно времени, как известно, геология стояла на той точке зрения, что Земля внутри расплавлена и прошла огненножидкую фазу, во время которой разделилась на железное ядро и силикатные геосферы. От этого взгляда понемногу отказываются. Однако такое мнение привело к большим и чрезвычайно важным последствиям. Пока считалось, что огненножидкое ядро существует, именно к нему апеллировали геологи для объяснения всех так называемых эндогенных явлений на Земле: этим объясняли и тектонику, и землетрясения, и вулканизм. Но эта трактовка стала невозможной, когда такое представление отбросили.

Господствующее направление геологической науки в объяснении тектонических явлений и горообразования, а следовательно и геологических циклов, находится сейчас у разбитого корыта. Доказано, что Земля тело холодное, и поэтому апеллировать для объяснения тектонических фактов ныне к огненножидкому ядру не приходится.

Теория радиогенного тепла также ничего не объясняет, за исключением констатации того факта, что в земной коре на некоторой глубине концентрируются радиоактивные элементы. В результате, господствующее течение в геологии сейчас не дает объяснений тектогенезу, а только описывает тектонические явления, подводя их под рубрику структур разных типов. Равным образом в вопросе о ходе геологических явлений это направление создало пульсационную теорию, которая констатировала последовательное чередование в истории Земли пульсации разных типов, но причин этого не выяснила.

Кроме этой теории, сейчас в нашей отечественной геологии есть еще теория радиомиграционная, идущая дальше теории пульсационной в том, что стремится объяснить пульсации миграциями радиоактивного вещества внутри тела Земли именно из ее глубин к поверхности. Однако и она причин миграции не объясняет, и апеллируя к миграциям из центра

к поверхности, в сущности ссылается на то же внутреннее ядро, представление о котором было недавно отброшено. К тому же, если даже будет доказан приток эндогенного тепла из глубин, он никак не объясняет причин определенного географического распределения на Земле горных и платформенных структур, ибо от нагрева до создания движении дистанция огромного размера.

Таким образом, общепринятых объяснений причин тектонических явлений, таких же объяснений цикличности этих явлений, а равно связанных с этим геологических циклов ни пульсационная, ни радиомиграционная теория не дают, и теорию этих явлений приходится строить иными путями. Поскольку Земля представляет собой движущееся, а не неподвижное тело, ключ к раскрытию ее явлений, и, в частности, тех твердо установленных смен событий в ее истории, которых называют пульсациями, следует искать в движении Земли ив его условиях.

Известно, что на движение Земли и на ее вращение не могут не влиять окружающие Землю условия среды. Это - прежде всего охватывающие Землю условия планетной системы Солнца, а также условия того более крупного целого, к которому планетная система принадлежит. В этом аспекте мы и будем подходить здесь к освещению жизни нашей планеты.

Прежде всего перед нами встает вопрос о воздействии на Землю ближайшего соседа - Луны и центрального тела нашей планетной системы - Солнца. Луна и Солнце воздействуют на вращение Земли при ее движении: а) путем создания прецессии, б) путем создания нутации, в) путем создания в океане приливных поднятий воды и г) посредством атмосферной циркуляции.

Отклонение, связанное при вращении Земли с прецессией, как показал Веронне (Veronne, 1912,1927), неодинаково на различных параллелях. Оно ощущается как расширение и сжатие на разных параллелях, за исключением параллели 35°15’52». Выяснено, что этот эффект прецессии не зависит от состояния вещества Земли. Он остается одним и тем же, будь это вещество твердым, жидким, и, наконец, таким же остается, если оно состоит из разных слоев - жидких и твердых.

Величина параллели, на которой прецессионное отклонение сходит на нет, также установлена Веронне, отметившим, что к этой широте приурочиваются также так называемые складчатые горы. В одной работе Красовского (1941) упоминается об указании Магницкого на то, что горные поднятия располагаются вдоль 35-й параллели. К этому выводу присоединился и Красовский.

Ранее мы уже отмечали, что в 1951 г. Стовас показал, что к 35-й параллели приурочены широтные дислокации Земли. Он, не зная работы Веронне, сделал свои исчисления точного положения этой параллели и получил ту же величину, 35°15’52», которая ранее была определена Веронне. Веронне в упомянутой работе привел схему, показывающую, как на 35-й параллели сходятся воздействия со стороны полюсов и экватора, создающие чередующиеся расширения и сжатия пород, дислокации и зоны разлома земной коры. Об этой схеме мы скажем дальше.

Отклонение, по расчетам, создает тангенциальное ускорение в меридиональном направлении величиной в 4 см/сек. 2 , давящее на породы с силой, равной 0.004 веса пород.

Эти сходящиеся с двух сторон боковые давления дают, но Веронне, результирующую, направленную согласно лучу вектора, как волна суточного прилива. В течение 24-часового суточного вращения различные параллели имеют тенденцию сжиматься в сторону 35-й параллели с тем, чтобы затем в последующие 12 часов от нее оттягиваться в противоположную сторону. Это и показано на схеме косым положением экватора, как и параллелей более близких, чем 35-я. Связь прецессии с суточным движением обусловлена тем, что она вызывается действием Луны и Солнца. Суммируясь за длительные промежутки времени, прецессия может создать большое тангенциальное движение поверхностных частей земной коры.

Другими проявлениями воздействия Солнца и Луны на земную кору являются приливные движения океана. Тормозящее влияние океанов на вращение Земли было указано еще Кантом. Затем оно в течение XIX в. было подтверждено рядом автором (Адамс, де Лоне, Томсон, Тэйт, Дарвин, Ньюкомб, Браун и др.).

Энгельс указывал, что приливы разлагают вращение Земли на силы, вычитающиеся из скорости вращения и действующие на отдельные участки Земли; они оказывают на них давление, отчего и создаются дислокации. Он подчеркивал, что это объяснение дислокаций у Томсона и Тэйта вовсе не требует апелляции к огненножидким силам внутреннего ядра Земли, они обходятся без этого.

Если из эклипсов выводить ускорение Луны, являющееся следствием замедления вращения Земли, создаваемого приливами, то величина этого ускорения даст разрыв в 5 2 по отношению к той величине ускорения, которую можно объяснить приливами. Полное ускорение, по Ганзену, равно 12», даже 12».56. Ньюкомб в 1912 г. уменьшил его до 10».9 и даже 8».4. Между тем, приливное ускорение равно всего 6 и 6».1. Есть основание думать, что остальное падает на прецессию и еще на какие-нибудь другие причины, в числе которых находятся нутация, а равно циркуляция атмосферы. Н. Н. Парижский (1945) пришел к выводу, что свободная нутация трехосной Земли приводит к очень небольшому изменению угловой скорости ее вращения, совершенно неощутимому для наблюдения.

О роли циркуляции атмосферы можно сказать следующее. На основе принципа, введенного Майером, о том, что всякое движение на планете, возбужденное движением самой планеты в целом, должно на последнее как-то воздействовать, есть основание думать, что и циркуляция атмосферы подобно приливным движениям должна замедляюще действовать на движение Земли. Размер этого действия подлежит изучению.

Парийский в 1953 г. собрал данные, начиная с 1935 г., относительно годовых изменений хода кварцевых и маятниковых часов с годовым и полугодовым периодом. Оказалось, что быстрее всего Земля вращается в августе и наиболее медленно в марте. Годичный период изменения хода часов оказался реальностью. Большинство исследователей связывает этот ход изменений с действительной неравномерностью вращения Земли. Какова причина такой неравномерности? Группа бельгийских ученых ее происхождение приписывала сезонному перераспределению воздушных масс. Однако Парийский пытался показать, что это представление неправильно, ибо расчетное перераспределение атмосферных масс дает эффект в 3000 раз меньший, чем эффект наблюдаемый, и поэтому заметного влияния на скорость вращения Земли оно оказать не может.

Парийский показал также, что на скорость вращения Земли не влияют вертикальные движения - перемещения масс сезонного характера: изменения растительного, снегового и ледяного покровов, изменения влажности атмосферы за счет водных резервов на той же географической широте. Отрицательный вывод приходится сделать о переменном нагревании поверхностей суши и океана; оно также заметным образом на скорость вращения не влияет. Очевидно, причину изменений скорости вращения приходится искать в других факторах.

Еще в 1926 г. Джеффрейс указал на роль изменений количества движения разных частей атмосферы в общей ее циркуляции. Эта проблема сезонных изменений циркуляции обсуждалась Старром и Уайтжером. В данном явлении может играть роль поверхностное трение между атмосферой и субстратом, а затем его различие по разные стороны меридионально расположенных горных хребтов. Речь идет, таким образом, о влияниях этого трения и гор. Первое во много раз больше водного.

По заключению Парийского, еще нельзя сделать уверенного вывода о том, что неравномерность вращения Земли в течение года полностью объясняется движениями атмосферных масс, но вывод этот, по его мнению, можно считать вероятным. Далее, Парийский считает, что не исключена и другая возможность, т. е. что изменения угловой скорости вращения Земли связаны не только с изменениями в атмосфере, но и с какими-то изменениями внутри Земли или у ее поверхности, с изменениями силы тяжести годового периода. Сезонные изменения в циркуляции атмосферы играют существенную роль в объяснении годичной неравномерности вращения Земли. По-видимому, они все же не могут объяснить всего наблюдаемого явления в пределах года. Прецессия с нутацией вместе, приливы, движения атмосферы - вот три фактора, влияющие на движение планеты. Исчерпываются ли ими все виды воздействия на это движение или имеется еще какой-нибудь фактор, эти результаты изменяющий, мы не знаем. Далее мы не знаем, нет ли причин исторически или, может быть, периодически изменяющих в течение истории развития Земли соотношение названных факторов.

В связи с ничтожностью роли нутации, дополнительной к роли прецессии, о ней мы говорить не будем, считаясь лишь с остальными факторами. Из последних неясна роль атмосферной циркуляции. Она возможно гораздо больше, чем пока выяснено точными исследованиями. На это, по сообщениям Аппеля, быть может, намекает указанная им роль атмосферной циркуляции в движениях материков. Надо думать, что значение этих движений выходит за пределы только годовых циклов и как-то суммируется с приливами. Этим общим указанием нам здесь придется ограничиться.

Обратимся к прецессионным колебаниям, а также к приливным движениям гидросферы, которые вместе с циркуляциями атмосферы воздействуют на литосферу. Прецессия, как мы указали, создает тангенциальные перемещения в земной коре. Это, говоря словами Аппеля, «горизонтальная сила, вызываемая Луной на поверхности Земли» (1936). Что касается приливов, то они, видимо, дополняют это вертикальной составляющей дислокаций.

Аппель полагал, что фазы тех и других дислокаций, их максимумы одни и те же у изменений, созданных прецессией, и у изменений, созданных приливами, а то, что фазы обоих видов нарушений совпадают, это, по-видимому, так, относительно же совпадения их максимумов можно, как мы увидим дальше, сильно сомневаться. Возможно, что максимумы - это разные эпохи жизни планеты. Первые движения, т. е. движения, связанные с прецессией, проявляются в скольжениях, которые могут, как правильно говорит Аппель, привести к тому перемещению полюсов земной поверхности по отношению к точкам планеты, которое объясняет наблюдения над положением древних ледников в районах, ныне близких к экватору. Скорость этого перемещения полюсов по ядру близка, по Аппелю, к 5° (за период в 2 млн лет). В известный момент эти тангенциальные перемещения приводили к вертикальным движениям в земной коре, создающим горные пояса. Как это происходит - неясно. Но самый факт установлен достаточно хорошо.

Что касается движений вертикальных, создаваемых приливами, то есть основание думать, что приливы океанические, суммируясь на больших промежутках времени, создают в земной коре внутренние приливные движения. Ими объяснял Перре землетрясения, для которых он вывел три закона на статистической основе, связывающие с землетрясениями частоту критических положений Луны и Солнца, дающих вместе с тем и максимальные приливы. Сходные идеи по поводу землетрясений развивал Э. Рате. К аналогичным результатам пришли Парвиль и Г. Фламарион.

Чтобы вертикальные движения земной коры могли полностью осуществиться и образовать всю систему высоких широтных гор, примыкающих к ним геосинклинальных впадин и пр., нужно, чтобы движения смещения параллелей и полюсов прекратились. Если учесть это обстоятельство, то мы должны эти движения, связанные с прецессией или обусловленные приливами, различать, ибо они имеют разные результаты. Именно это и наводит на мысль, что происходят они, возможно, в разные фазы земной истории.

Известно, что горные поднятия в историческую фазу жизни Земли, т. е. начиная с кембрия, повторялись шесть раз. Эти короткие фазы вспышек поднятия гор - салаирская (саянская), каледонская, варисцинская, древнекиммерийская, новокиммерийская и альпийская - отделены одна от другой длинными фазами перерывов, когда поднятий гор не было. В то же время можно отметить, что места нахождения древних гор различных фаз горообразования если и совпадают, то лишь частично, а в основном они различны. А так как в каждую фазу горные пояса должны были располагаться на 35-й параллели, становится ясным, что эта параллель в течение геологической истории меняла свое положение. Если признать, что соотношение фактов во времени и пространстве было именно таким, то придется констатировать, что если в короткие фазы вспышек горообразования происходили вертикальное поднятие гор и погружение впадин, осуществлявшееся в виде приливных движений земной коры на подобие приливов океана, то в длительные фазы перерывов ярко проявлялись вызванные прецессией тангенциальные перемещения земной коры. Именно в ходе перемещений создавались новые положения полюсов, а с ними и новые положения 35-й параллели, после которых перемещение полюсов коры и ее параллелей приостанавливалось, и этим обусловливалось новое положение широтных поясов горообразования.

Горы на материках близ границ их с океанами, как ни смотреть в деталях на их генезис, представляют собой поднятия, и в этом смысле они неизбежно должны быть тоже результатом толчка извне, ибо нет, как мы выяснили, опираясь на Энгельса, другой силы, которая противодействовала бы тяжести, кроме отталкивательных сил тяготения.

На основании изложенного нам рисуется неоднократное повторение в истории Земли двух фаз: длинных промежутков, в которые происходили очень незначительные тангенциальные перемещения земной коры и коротких эпох поднятия гор на основе тех же, но более глубоких и сильных тангенциальных движений. Есть основание к этим двум фазам добавить третью. Когда перед началом эпохи нового горообразования подходил к концу этап горизонтальных перемещений, сходили на нет прежние контрастные формы рельефа, унаследованные от предыдущей горообразовательной вспышки. Это выделяло конец длительной фазы, лишенной горообразования, еще в особую фазу. Так получились три фазы развития рельефа и поднятий земной коры.

В первой фазе развитие рельефа и структур происходило энергично, и горы поднимались в эту фазу высоко, при слабом развитии в ту же эпоху тангенциальных движений земной коры - это фаза ледниковая.

Во второй фазе происходили снижение и пенепленизация ранее возникших гор и вместе с тем усиление тангенциального перемещения земной коры; это - фаза пенепленизации гор. Наконец, в третью фазу горы снижались до минимума, и тангенциальные движения начинали замедляться. В свое время эту фазу я назвал ксеротермической.

Таким образом, геологический цикл начинается ледниковой фазой, затем следует долгий промежуток пенепленизации, который сменяется третьей фазой - ксеротермической.

Ясно, что хотя в ходе развития нашей планеты, который был до сих пор во все эпохи развития нашей планеты, насколько мы знаем, поступательным, имелись элементы повторяемости, когда некоторые явления, говоря словами В. И. Ленина, как бы повторяли пройденные ступени, но повторяли их на более высокой фазе «отрицания», ввиду этого получается развитие не по прямой линии, а по спирали. Хотя контур спирали не может быть замкнутым, тем не менее извилистые элементы повторения в силу этого становятся видными в истории Земли, хотя это и не буквальное повторение. Имеется основание эти периоды времени, по окончании которых развитие как бы повторяется, но в наиболее высокой базе, называть геологическими циклами. В течение той части геологического времена, которое относится к исторической фазе жизни Земли, таких циклов было шесть, и они в совокупности своей охватили около пятисот миллионов лет.

Действующие на Земле силы меняются по фазам геологического цикла. Есть фазы, когда эти силы увеличиваются, есть такие, которые, наоборот, ослабляются. Так, в истории Земли фазы горообразования были фазами увеличения энергии Земли, возрастания геологических сил. Поскольку, как мы сказали, в исторической фазе жизни Земли имело место шесть фаз горообразования, то можно утверждать, что эта историческая часть включала в себя шесть геологических циклов. Последняя из фаз горообразования, относящаяся к альпийскому времени, по примерному расчету, если считать, что она началась во второй половине миоцена, длится уже 7 млн лет. Но она еще не окончилась и сколько продлится - неизвестно.

Можно думать, что полный максимум развития этой фазы достигнут был тогда, когда наибольшим было оледенение. Теперь оледенение идет на убыль и становится явно меньше, чем было в период распада так называемой ледниковой эпохи. Раз это так, то мы можем предположить, что переживаемая нами ныне фаза может продлиться еще 3-7 млн лет, и всю ее длительность можно оценить не больше чем в 10-15 млн лет. Это, конечно, только предположение, но оно довольно вероятное.

Едва ли длительность этой последней фазы горообразования существенно отличается от длительности предыдущих горообразовательных фаз - каледонской, варисцийской и пр. Если мы примем, что все одинакового типа фазы были более или менее равны, то также равными окажутся и промежутки между фазами горообразования. Приняв каждую фазу горообразования в истории нашей планеты равной 10-15 млн лет, для промежуточных между ними фаз получим 60-65 млн лет. Общая же продолжительность всего цикла вместе с фазой горообразования в нем окажется равной 70-80 млн лет.

Если это соотношение геологических циклов и периодов выразим на рисунке, то увидим на промежутке от конца кембрия до наших дней шесть правильно вздымающихся больших волн поднятий гор. Промежутки между максимальными пиками волн поднятия, т. е. полные геологические циклы, составляют 60-70 млн лет, причем они получаются так, что волна поднятия делится на две половины между двумя циклами. Полная волна поднятия, равная 10-15 млн лет, - это критическая фаза или фаза тектонической революции - диастрофы; длинный промежуток между волнами равен 50-55 млн лет - это органическая эпоха в жизни Земли. Термины «органический» и «критический» взяты у Сен-Симона.

Обратимся к проблеме тектонических движений на Земле в связи с явлениями в нашей Галактике. По указанию X. Шепли (1947), при расстоянии нашей солнечной системы от центра Млечного Пути в 30 тыс. световых лет для полного оборота солнечной системы вокруг своего космического центра при скорости 300 км/сек. (Шепли) или 250 км/сек. (Боки, 1948) требуется около 150-200 млн лет.

Боки полагают, что начало исторического времени жизни Земли - кембрий - было два с половиной космических года назад (Боки, 1948). Сопоставим относящиеся сюда цифры. Историческое время жизни Земли равняется, как мы видели, 456 млн лет, а полный оборот Солнца, т. е. космический год, - 150-200 млн лет. Если для выражения величины полного оборота остановимся на цифре 140-150 млн лет, то в историческое время жизни Земли уложится три полных оборота Солнца. Мы берем цифру 140-150 млн лет вот по каким соображениям.

Полный геологический цикл, как мы видели, составляет около 70 млн лет, т. е. примерно равен половине галактического года. Учитывая это, для галактического года берем не 200, а именно 150 млн лет. Если наше предположение о связи галактического года и геологического цикла верно, то в каждом галактическом году умещается два геологических цикла. За три космических года их было шесть: предсаянский, предкаледонский, предварисцийскпй, преддревнекиммерийский, предновокиммерийский и предальпийский.

Прилагаемая картина дает соотношение геологических периодов, геологических циклов и космических лет в масштабе геологического времени.

Если мы говорим о планетной системе Солнца, что она находится в динамическом равновесии, то тем более в равновесии находится система нашей Галактики - Млечный Путь. Это равновесие тоже подвержено изменениям. Астрономы отмечают, что для промежутков времени, равных миллиардам солнечных лет, очень заметным становится влияние случайных встреч отдельных проходящих мимо друг друга светил.

Откуда могут получиться такие случайные встречи? Если планеты движутся с разной скоростью, то и в Галактике близкие к ее центру звезды вращаются быстрее более далеких. При таком положении сближения светил каждый раз получаются во все новых и новых условиях, что вызывает и новые условия резонансов гравитационных колебаний. Постепенно периодически меняются и формы светил, и характер их движений. Влияние соседних светил в виде взаимодействия между собой их гравитационных воздействий и гравитации планетной системы, определяющей ее форму и прочность, в состоянии заметно изменить направление движения данного светила в пространстве и его скорость (меняются и скорость, и орбита). Дело здесь не в близких встречах светил, для которых рассчитано, что они на расстоянии ста космических единиц могут сблизиться в среднем один раз в двадцать триллионов лет, или в сто тысяч лет космических (Боки, 1948), а в воздействиях более далеких.

Известно, что «орбита Солнца постоянно изменяется под влиянием более далеких соседей. Отдельная звезда, проходящая на расстоянии в один световой год, изменит направление движения Солнца меньше чем на одну минуту дуги, но число таких встреч довольно велико» (Боки, 1948). В течение космического года, как говорят Боки, полный эффект от всех встреч с другими звездами будет в среднем примерно тот же, как от указанной выше одной встречи на расстоянии ста космических единиц.

Иначе говоря, эти далекие действия будут очень эффективны. Если они сильно отражаются и на самом Солнце, то не может не быть отражения их и на планетах системы Солнца. Обмен гравитационной энергии должен, конечно, распространяться и на планеты, в том числе на Землю.

Тектоника, согласно представлению Энгельса о толчке извне, есть результат борьбы, сочетания и взаимодействия двух гравитационных сил: силы тяжести - притяжения самой Земли и тяготения других тел, прежде всего Земли и Солнца. Соотношение этих двух сил меняется в ходе движения нашей планеты и в ходе движения других небесных тел по отношению к ней. Первая сила, по Энгельсу, создает притяжение, вторая - отталкивание. Они, в основном, уравновешивают друг друга. Но внешняя сила в зависимости от расположения светил усиливает свое воздействие, подобное тем воздействиям, которые Солнце производит в приливообразующей силе Земли.

Когда же мы говорим о тектонике, периодически повторяющей свои энергичные движения примерно через 70 млн лет, то ясно, что здесь имеется в виду долгосрочно ритмично повторяющееся воздействие. Это - проблема нерешенная, но решить ее можно только совместными усилиями нескольких наук. Геология дает точную хронологическую канву для распределения в геологическом времени тектонических диастроф.

Добавим к этому следующее. Если, говоря о приливных водах океана, мы их создание можем приписать только факторам, происходящим внутри планетной системы Солнца, но вне Земли, то изменения скоростей могут диктоваться и гравитационными силами вращения, имеющими источник в Галактике, вне системы Солнца. Это очень важно в связи с тем, что периодичность тектонических вспышек в истории нашей планеты такова, что объяснить ее приливными воздействиями планет невозможно, поэтому надо искать другие причины. Этими причинами и являются изменения движения светил, логически принуждающие выйти за пределы планетной системы в нашу Галактику - Млечный Путь.

Возможно, однако, что эти силы, если они проявляются, воздействуют на планетную систему и Землю не непосредственно, а через Солнце и Луну, изменяя через них прецессионные качания и приливное трение. Здесь мы находимся все-таки в области гипотез, и признанным фактом, который пока надо объяснять гипотезами, является повторяемость шести геологических циклов в 60-70 млн лет каждый. Это достоверно. Согласование же циклов с космическими годами менее достоверно, но очень вероятно.

Б. Ю. Левин недавно указал, что в течение существования Земли климат на ней почти не изменился (1954). Это утверждение не совсем верно. Климат Земли изменялся много раз, но все изменения его носили не поступательный, а циклический характер. История климата планеты в целом показывает, что изменения его носили характер лишь колебаний - временных, хотя и длительных, отклонений от некоторого среднего уровня. Таким образом, и те большие геологические циклы, которые нами выше охарактеризованы, носят характер больших климатических колебаний от ледниковой фазы через фазу умеренную к фазе засушливой, ксеротермической, после которой климат вновь возвращается к ледниковой фазе.

Мною в свое время подробно были освещены геологические циклы, причем черты их характеристики относились именно к климатическим и биологическим условиям частей цикла. Там же была применена схема соотношения геологических циклов и периодов, которая повторяется в данной работе с тем лишь отличием, что здесь геологические циклы сопоставлены с космическим, чего я не делал ранее. Зато там много говорилось о биологической стороне вопроса, и было показано, что с фазой засушливой, или ксеротермической, совпадают одновременные большие сплошные вымирания не всех, но определенных органических форм.

Очевидно, сейчас, учтя сопоставление геологических циклов с космическими годами, можно указать соотношение фаз вымирания живых существ с оборотами Галактики, что дает возможность дать впоследствии более определенную характеристику относящихся сюда частей этих оборотов.

Обращаясь к характеристике климатической стороны геологических циклов, можно отметить следующее. Ледниковые фазы каждого геологического цикла отличаются холодным климатом, обилием вод на суше и сокращением трансгрессии в океане. В умеренную фазу количество воды на суше начинает постепенно убывать, а в океане - увеличиваться, отчего происходит трансгрессия. Наконец, в засушливую фазу воды на суше меньше всего, а в океане ее имеется в достаточном количестве. Ясно, что геологические циклы характеризуются не только определенными чертами структурно-тектонических изменений, о которых мы уже говорили, но могут быть охарактеризованы как большие климатические изменения.

В 1941 г. я указал, что эти две стороны природных явлений тесно связаны между собой - поднятие высоких гор, создание контрастного рельефа (высокие поднятия и сильные опускания), и оледенение. Л. С. Берг (1946) не согласился с моей точкой зрения и указал, что оледенение имеет свои отдельные причины, которые кроются в понижении температуры воздуха, причем по поводу этого понижения температуры «можно в настоящее время высказывать только догадки». Берг (1938) полагал, что «почти не может быть сомнения в том, что причина внезапного охлаждения лежит или в деятельности Солнца или в каких-то других более отдаленных космических фактах».

Нужно признать, что это сказано весьма неопределенно, и получается, что поднятие гор зависит от каких-то внутренних причин и с факторами космическими, внеземными, никак не связано, а вот оледенение вызывается воздействием внеземных причин. На самом же деле и то, и другое, т. е. изменение структур и рельефа, с одной стороны, и изменения климата Земли, с другой, достигается одними и теми же причинами - воздействием на вращение Земли движений и сил, вызываемых телами, находящимися вне Земли, и прежде всего Луной и Солнцем. Мысли о внеземных силах, которые привлекает Берг, надо распространить не только на климаты, но и на земную геоморфотектонику, и тогда получится тот параллелизм горных поднятий и климатических изменений, на который я указываю с 1941 г.

Этот параллелизм и неотрывность геоморфотектонических и климатических изменений, которые мы только что указали, позволяют, когда видимы только изменения климатические, указывать по ним соответствующие им явления геоморфотектонические, и, наоборот, когда видны только геоморфотектонические стороны цикла, по ним восстанавливать проявления климатические. Из всех трех фаз геологического цикла наиболее заполнена цикловыми проявлениями того и другого рода фаза ледниковая, являющаяся вместе с тем и фазой горообразовательной. О фазах умеренной и ксеротермической можно сказать, что там эти цикловые проявления были минимальными и, надо думать, сходили на нет к концу цикла.

В исторической части жизни Земли было, как указано, шесть циклов, и поэтому горообразовательная фаза повторялась шесть раз. Ближе всего - альпийская горообразовательная фаза, которая является последней. Поднятия этой фазы происходили, как уже говорилось, на промежутке от второй половины миоцена, именно от эпохи верхнего сармата включительно, до современности. Они длятся уже 7 млн лет и, возможно, продолжатся еще столько же, если судить по аналогии с другими горообразовательными фазами. Именно поднятия этой фазы создали на Земле высокие горы последней вспышки горообразования.

При суждении об этих горных структурах надо иметь в виду следующее. Главные самые большие структуры Земли, ее мегаструктуры, - это материки и океаны. Что касается гор, то они - производное материков и океанов и являются макроструктурами. Находясь на материках, на краях их с океаном, горные пояса всегда являются производными взаимодействия океанов и материков. Как правильно указывал Карпинский, они тем сложнее и выше, чем больше несущий их материк. Этому отвечает и то, что в сейсмике движению материков отвечают сейсмы глубиной в 150, 300, 700 км, а горным поясам - движения в 30-70 км.

В моих работах о современной геологической эпохе (1940, 1941) было сказано, что горообразовательные омолаживающие рельеф материков движения миоценово-четвертичного времени являются движениями вертикальными - прямыми поднятиями и опусканиями. Эти движения, конечно, не самостоятельны, и поскольку, как мы видели, они связаны с величинами материков, то и зависят от тех глубоких тангенциальных движений земных оболочек, в которых участвуют несущие их материки в целом. Вместе взятые и вертикальные поднятия гор, действующие против действия силы тяжести, и попутно порождающие их вместе с вертикальными же опусканиями мощные тангенциальные перемещения толщ земной коры, конечно, являются производными отталкивательных сил, т. е. того толчка извне, идею о котором так давно выдвинул Ф. Энгельс; это - следствия прецессии и приливных воздействий.

Таким образом, именно толчок извне производит изменение гравитационного сжатия Земли во времени. Но это изменение сжатия, если его принять, возникает не автоматически, само по себе, а под действием сил извне, которые могут закономерно и зонально создавать под определенными широтами поднятия лежащих выше масс. Это и является симптомом происходящего изменения гравитационного сжатия нашей планеты на определенных площадях, вызванного отталкивательными силами, действующими при движении Земли и противостоящими силе тяжести.

Следовательно, не сжатие Земли в глубинах играет роль в создании тектоники Земли, а изменения полярного уплотнения во времени, а они, если следовать мысли Энгельса, лишь производные силы тяготения в ее «отталкивательной» части.

Есть полное основание утверждать, что в начале этой фазы существования гор они были созданы прямым поднятием. Иными словами, каковы бы ни были подготовительные процессы к горообразованию - это подготовляло глубокое тангенциальное перемещение земной оболочки - само поднятие горных поясов создано было больше всего вертикальными силами. Этот вывод сделан на базе того большого фактического материала геоморфологических наблюдений над горными структурами, который был мною собран в течение ряда лет, с 1942 по 1950 г., в горах Средней Азии, особенно в Ферганской и Таджикской впадинах (1945а, 1948а, б, в). В этих материалах дается критика теории поднятия тор по теории складкообразования.

Если учесть, что это вертикальное поднятие, будучи прерывистым, запечатлено рядом уровней высоких горных денудационных поверхностей в количестве от 6 до 10, то можно сделать вывод, что эти уровни молодых денудационных поверхностей являются этапами поднятия горных поясов.

Остановимся на возрасте молодых денудационных поднятий. Самые высокие из этих поверхностей создались раньше всего и относятся к верхнему миоцену. Остальные восемь уровней поверхностей размещаются между концом миоцена и бакинским ярусом Прикаспия и его аналогами других мест, относящимися уже к фазам четвертичного времени или частью к концу плиоцена.

Недавно Н. И. Кригер (1951), исследуя явление образования речных и морских террас, пришел к выводу, что террасообразование есть колебательный цикловой процесс изменения вертикального положения дна долин относительно водораздела. Вследствие этого разнообразие комплексов уровней таких колебаний ограничено в связи с условиями, связанными с видом террасового ряда. Террасы в большинстве случаев не локальны, а являются отражением колебаний для данной полосы. Это сближает, по Кригеру, геоморфологию и климатологию. Колебательное движение литосферы здесь совпадает с таким же колебанием климатического характера в атмосфере. Денудационные горные поверхности и такие же поверхности платформенные представляют собой древние дочетвертичные террасы, и с этой точки зрения их тоже можно рассматривать как циклическое явление, высотные характеристики его денудационных уровней можно дополнять климатическими. Этим путем получим циклы промежуточные по величине между геологическим циклом, с его ледниковой и другими фазами, и одними из самых больших многовековых периодов - пятитысячелетними.

Если циклы денудационных поверхностей исчисляются миллионами лет, то циклы террасовые - сотнями и десятками тысяч лет. Это - большие циклические части последней фазы геологического цикла, имеющие свою климатическую характеристику, в которую входит такое большое явление, как оледенение, и его этапы.

Приведенные данные о поднятиях гор альпийской фазы позволяют нам взглянуть и на этапы поднятия горных систем как на циклическое явление. Отдельные части поднятия представляют собой отдельные циклы. На указанном промежутке альпийского поднятия гор мы видим, таким образом, не меньше шести этапов поднятий, индикаторами которых являются денудационные поверхности, и пять промежутков между ними.

Мы не знаем, конечно, скоростей, с которыми происходили эти поднятия. Если представить себе, что каждое предыдущее поднятие отделено от следующего за ним одинаковыми или близкими по величине интервалами времени статического состояния рельефа и структур, то можно было бы сказать, что каждый этап, отделяющий цикл от одного этапа поднятия до следующего, равен примерно одному миллиону лет.

Когда мы изучаем поднятие гор, нам кажется, что начинаем ясно чувствовать климатический момент тогда, когда оно приводит к оледенению. Фактически это не так, и о климатическом моменте при поднятии гор говорит еще и денудация - работа и роль воды при поднятии. Изучая горообразование, мы, конечно, обязаны обращать внимание и на эти моменты, находящиеся с поднятием гор в неразрывной связи.

Поэтому если мы это осознаем, то в полной мере поймем, что циклическое явление поднятия гор идет наряду с тоже циклическим явлением изменения климата. Те промежутки времени, которые отвечают в поднятии гор одному периоду и вмещают в себе, как только что сказано, миллион, а может быть и два миллиона лет, являются не только этапом поднятия гор, но своеобразным климатическим циклом.

Как известно, для современной климатической фазы климатология знает ряд коротких климатических колебаний, климатических циклов, продолжительностью около 3, 6, 11, 16 и 30-35 лет. Среди этих коротких циклов, связанных с колебаниями деятельности Солнца, особенно выделяются так называемые брикнеровские «периоды» и «одиннадцатилетние» циклы, связанные с колебаниями солнечной активности.

Эд. Бриннер в 1890 г. обратил внимание на повторяющиеся 30-35-летние циклы, причем он проанализировал два явления почти за 200 лет, начиная с 1700 г., и частично привлек более ранний материал начиная с XIV в.

В отечественной литературе над проблемой брикнеровских «периодов» работал М. А. Боголепов, который обратился к русским летописям и в ряде работ с 1907 по 1929 г. использовал данные о климате за период с IX-X вв. по наше время. Во многом он не был согласен с Бриннером. Постановка вопроса Боголеповым учитывает гораздо более сложные обстоятельства, но в основном он подтвердил существование этих периодов. Позднее эти циклы показал А. В. Шнитников (1949, 1950, 1957), установив их реальность вплоть до последних лет, с продолжительностью в пределах 25-35 лет.

Весьма широко распространенными являются циклы 11-летние. Они стали широко известны с 1873 по 1881 г., когда были опубликованы в Германии обширные труды В. П. Кеппена, в которых отмечалось существование климатических 11-летних циклов. В 1873 г. он обработал данные по 250 станциям за годы с 1820 по 1870. Он выделил несколько 11-летних циклов, но не мог не указать, что эти периоды не выдерживаются все время, так что если брать длинные метеорологические ряды, то получается большая разноречивость результатов. Несмотря на это, идея Кеппена не была забыта и получила подкрепление, когда Вольф открыл 11-летний цикл солнечных пятен, что позволило связать эти циклы непосредственно с деятельностью Солнца.

Сейчас 11-летний цикл находит в СССР много сторонников. К нему склонялся М. А. Боголепов, его поддерживали и поддерживают В. Б. Шостакович (1931, 1934)..В. Ю. Визе, С. Хромов, М. С. Эйгенсон (1948), Б. М. Рубашов, Н. С. Токарев, А. В. Шнитников (1951). Гелиофизики Смитсонианского института Карнеджи в США также присоединились к этим идеям. В течение 40 лет развивал идею об этой цикличности Аббот. Имеются, однако, работы Бергенмейера, Баура, г-жи Паранджи, в которых этот цикл резко критикуется, отвергается. Если есть периоды, когда этот цикл виден отчетливо, то имеются другие годы, когда он совершенно не проявлялся, что, видимо, является следствием весьма малой активности Солнца в такие годы.

Несмотря на эти последние высказывания, реальность проявления 11-летнего солнечного цикла к настоящему времени не подлежит сомнению. Несколько по-иному обстоит дело с другими климатическими циклами - 16-летними, 6-летними, 3-летними и пр. Они не всегда четко проявляются на больших промежутках времени, а иногда вовсе теряются, причем причина этого до сих пор не выяснена.

Самыми малыми колебательными явлениями представляются год и сезонные климатические колебания (весна, лето, осень и зима), имеющие чисто периодический характер. Они сомнениям не подлежат и полностью выдерживаются, хотя и причудливость вариаций у характеристик года и фаз года очень велика.

Кроме коротких циклов и периодов типа, очерченных выше, современная наука знает значительное количество циклов более длинных, вековых и многовековых (80-летние, 111-летние, 500-600-летние, 2000-летние и т. д.). Необходимо сразу подчеркнуть, что некоторые из них имеют явно «солнечное» происхождение, т. е. являются следствием колебаний солнечной активности. Примером таких циклов является вековой цикл солнечной активности, показанный Шнитниковым и приводимый в книге Эйгенсона (1957), а также и других авторов.

Происхождение иных циклов еще недостаточно или не всегда ясно. Однако реальность подтверждается их существованием в различных геофизических явлениях. Так, в 1868 г. Фриц, а в 1883 г. Рейс показали 110-112-летние циклы, в 1928 г. их же установил Брукс. Он выдвинул циклы 75-80-летние. Известны циклы в 500 лет, обнаруженные Бруксом, Турковским и др. Наконец, Предтеченским выдвинуты периоды в 1600 лет, Шнитниковым - в 1800-2000 лет. Имеется и еще целый ряд других циклов и периодов. Соотношение вековых и многовековых циклов таково, что вековые циклы или периоды складываются из соответственных малых циклов как своих частей.

На схемах, взятых из Э. Ле Дануа (Danois, 1950), можно видеть, как 111-летний цикл складывается из 11-летних циклов или как цикл тысячелетний складывается из 111-летних. На этом рисунке изображено, как потепление конца первого тысячелетия нашей эры переходит постепенно в похолодание климата, достигающее максимума к половине XV в. (к 1436 г.), после которого начинается потепление, продолжающееся до наших дней. То же самое кратко резюмировано, с исключением мелких колебаний, где показаны изменения сплошности льда у полюсов. На нем обрисованы две теплые эпохи. Центры каждой отстоят одна от другой на 1300-1300 лет. Это указывает на существование цикла, близкого к циклу в 1800 лет, который выдвигал и убедительно с большим талантом обосновывал А. В. Шнитников.

Схема, которую он давал в 1949 г., очень интересна, но еще убедительнее, показательнее та схема, к которой он пришел в 1957 г. в своем большом труде. В этой схеме он объединяет такие климатические явления и процессы, как водоносность рек, состояние озер, изменения внутренних трансгрессий морей и суммирует все это, как изменения общих условий увлажненности. Он показывает несколько циклов в 1800-2000 лет. От 3500 до начала современной эпохи таких циклов два с половиной. Он показал хронологическую связь этих явлений с приливными явлениями.

Даже самые большие из ныне известных многовековых циклов, циклы двухтысячелетние, мизерно малы по сравнению с циклами геологическими. По отношению ко всей ледниковой части геологического цикла они составляют их пятнадцатимиллнонную долю.

В отношении геологических циклов мы в предыдущем изложении видели связь их с вращением, доводом в пользу чего является их примерное равенство, очевидно, соответствующее периодичности и правильности вращения, а затем кратность геологических циклов с космическими годами, что связывает их с вращением Галактики.

Что касается обычных климатических Циклов современной эпохи, а равно многовековых климатических циклов, то в связи с большим отличием их величин от размеров геологических циклов распространить вывод об их связи с вращением планеты нельзя. Однако эта связь с вращением планеты у обычных климатических циклов современности несомненна и ее легко показать.

Так, И. В. Максимов (1953) отметил, что «одиннадцатилетние колебания солнечной активности испытывают восьмидесятилетние циклические колебания, в ходе которых значения периода и амплитуды одиннадцатилетнего цикла солнечной активности испытывают значительные изменения. При этом увеличение средней величины солнечной активности связано с уменьшением периода и увеличением амплитуд одиннадцатилетних ее колебаний, а уменьшение - с увеличением периода и уменьшением размеров одиннадцатилетнего цикла солнечной активности».

Существует, видимо, и другой закон вековых изменений периода и амплитуды 11-летних колебаний солнечной активности. На основании периодографического анализа изменений средней толщины годовых колец секвой в Калифорнии, как указал тот же Максимов, (1954), выяснено, что размеры 80-летних колебаний климата северного полушария Земли испытывали в течение трех тысячелетий значительные изменения.

Максимов указывает на изменение 11-летнего цикла в пределах от 6 до 16 лет, причем амплитуда колебаний солнечной активности менялась за то же время от 51 до 153% своей величины. Характеристики колебаний этих малых циклов являются еще более значительными в ходе развития 600-летних циклов. Эти изменения малых циклов в ходе развития больших отнюдь не должны настраивать нас на скептический лад и заставлять отвергать на этом основании существование 11-летних и других мелких циклов.

М. А. Боголепов интуитивно предчувствовал существование материального носителя климатических колебаний, когда говорил, что они связаны с возмущением всего тела Земли. Мы можем сейчас на основе имеющихся новых фактов выразись это более конкретно и связать их с вращением Земли и ее изменениями.

Как указал Стовас (1951), сопоставление кривой среднего значения амплитуды 11-летних колебаний средних годовых чисел Вольфа с кривой вращения за большой, почти 300-летний, период приводит к совершенно неожиданному результату, т. е. к совпадению их 80-летних максимумов и к общему единому характеру поведения кривых, что не случайно и указывает на единую причинную связь между ними. Он отметил, что в 1949 г. к совершенно аналогичным выводам пришел Ю. Д. Калинин. Последний, сравнивая эпохи скачков в геомагнитных вариациях по наблюдениям за 60 лет в обсерваториях Павловска и Бомбея с эпохами скачков в угловой скорости вращения Земли, писал, «что те и другие скачки представляются имеющими общую причину».

Прилагаемая кривая это хорошо иллюстрирует. Она составлена Стовасом для средних значений амплитуд 11-летних колебаний среди годовых чисел Вольфа с кривой угловой скорости вращения Земли. Из кривой, дополненной геомагнитными данными Калинина, получается определенная зависимость и геомагнитных вариаций, и климатических циклов мелкого калибра от колебаний угловой скорости вращения Земли.

То же самое можно видеть, если сопоставить графики изменений приливов на протяжении последнего столетия с графиком изменения скорости вращения планеты за то же время.

Э. Ле Дапуа указал, что большое значение в истории приливов имеют 111-летние лунные периоды.

Поэтому на графике мы берем для сопоставления не точно столетие, а именно такой 111-летний период. В нижней части графика сравниваются вершины векового прилива за 111 лет, с 1828 по 1939 г., и график изменений скорости вращения Земли на то же время. График изменений скорости вращения показан в двух видах. График дает впечатление прямой пропорциональности векового прилива и скорости вращения.

Но это впечатление, если посмотреть на правой стороне чертежа обозначение размеров скоростей в пространственных секундах, является ложным: они убывают и являются отрицательными к вершинам поднятых пиков и положительными в опущенных местах кривой. Наоборот, на графике в эти скорости показаны так, что их максимальные значения находятся вверху.

Если график нужен для того, чтобы показать взаимную связь приливов и скоростей вращения, то из графика в видно, что приливы, как это полагал Энгельс, вычитаются из скорости, так что чем выше прилив того или иного года, тем ниже скорость вращения Земли. Эти две величины таким образом антагонистичны. Видно, что вековой прилив растет за счет уменьшения скорости вращения, и поэтому там, где он достигает большой величины, скорость ничтожна (1885 г.), а там, где он мал (1830, 1939 гг.), - скорости велики. Максимум одной из этих величин отвечает минимуму другой.

Мы проанализируем два графика. На первом была показана зависимость геомагнитных и климатических колебаний от угловой скорости вращении Земли, на втором - связь приливов с той же угловой скоростью. Оба графика вместе связывают климатические колебания с приливами и скоростью вращения.

От изменений высот векового прилива зависят и биологические явления в океане. С высокими приливами 1885 г. совпадали сказочные уловы сельди, и, наоборот, в 1830 и 1939 гг., когда приливы были низкими, улов сельди был невелик. Улов сельди сам по себе не есть биологическое явление, но он связан с последним, так как определяется условиями размножения. А это явление, которое прямо связано с уловом, представляет явление биологическое. Очевидно, биологические явления тоже зависят от приливов, т. е. связаны со скоростью вращения Земли. Видимо, в теплые годы высоких приливов размножение сельди повышается, в результате чего достигаются прекрасные уловы. Наоборот, в годы холодные ухудшаются условия размножения сельди и снижается улов. Даже не анализируя этот вопрос глубже, можно констатировать, что те же приливы, которые обусловливают, как мы только что видели, геотектонику, являются вместе с тем причиной и климатических колебаний.

Мы пришли, таким образом, к большому и важному выводу об единстве факторов, определяющих динамику тропосферы, динамику твердой земной оболочки - литосферы, гидросферы и наконец существование жизни.

Как ни толковать два предыдущих графика в деталях, основное их содержание определенно говорит за то, что климатические циклы (11-, 80- и 111-летние) обнаруживают через приливные поднятия океана определенную связь с вращением Земли. Можем ли мы этот вывод перенести на циклы большой длительности (600-, 1000- и 2000-летние)? Доказать их исторический ход, шаг за шагом, как это сделано для более коротких колебаний, мы не можем. Однако эту характеристику, видимо, надо распространить и на многовековые циклы, в особенности на 2000-летние, как доказано Шнитниковым.

Выше мы отмечали, что короткие циклы, являясь составной частью многовековых и находясь под их влиянием, также испытывают изменения. Восьмидесятилетние колебания средней величины солнечной активности в среднем через 570 лет испытывают усиления, и то же самое относится к вековым изменениям одиннадцатилетнего цикла.

Если это учесть и считаться с тем, что в кратных числах выражается связь коротких циклов многовековых, то можно сказать, что многочисленные циклы земных климатов современной эпохи - это не разрозненные явления, а части согласованного целого - единой системы циклов. Каждый из 500-, 1000-, 1800-2000-летних циклов складывается из 11-, 80- и 111-летних циклов и, следовательно, на всем протяжении каждого из них должна проявляться зависимость климатических колебаний и приливов от скоростей вращения. Это же необходимо распространить на всю современную эпоху (послеледниковое время), которая охватывает период в десяток тысяч лет или около того. Следовательно, сюда войдет пять-шесть 2000-летних циклов, которые, возможно, сведутся к двум приблизительно 5000-летним циклам, мысль о которых была выдвинута недавно.

Вся система циклов таким образом тесно связана и имеет единую основу с вращением Земли. Если вращение, как мы видели, лежит в основе геологических циклов, то оно же, если от крупного перейти к мелкому, лежит в основе сезонных подразделений года, т. е. влияние вращения распространяется и на все промежуточные циклические явления. Иначе говоря, это значит, что вся система циклических явлений, от космического года и геологического цикла до цикла годового, имеет единое основание. Система циклических явлений едина по своей сущности.

Но так как 111-летние периоды образуют своего рода ряд ступеней, спускающихся к наиболее холодному времени (XVI в.), ясно, что и скорости вращения должны от максимума к максимуму сильно меняться, ибо самые большие приливы, судя по исследованиям Отто Петтерсона, наблюдались в XIV-XV вв., затем они в обе стороны убывали, но не прямо, а через 111-летние циклы. Для скоростей вращения здесь должна получиться такая желестница ступеней» только в обратном направлении: если приливы XIV-XV вв. были огромными, то скорость вращения должна была быть очень малой.

Во сколько раз должна увеличиться величина этой лестницы, если в общую картину изменения скорости вращения уместить ледниковую форму цикла и вслед за этим дать картину изменений скорости вращения для всего геологического цикла? От этого мы очень еще далеки, но необходимо идти именно в эту сторону на основе того общего положения, что всегда существовавшие на Земле океаны постоянно, но по-разному, своими приливами уменьшали и скорость вращения нашей планеты и вместе с тем оказывали на ее тело давление, создавая поднятия и опускания.

В заключение, возвращаясь к малым циклическим колебаниям, следует сказать следующее. Если выше мы говорили, что за поднятием гор надо видеть происходящие одновременное этим климатические изменения, то сейчас можно отметить, что за климатическими циклами малых размеров нужно разглядеть и сопровождающую их геотектонику. Те и другие изменения всегда идут параллельно.

Общие выводы, к которым мы пришли, являются следующие.

1. В истории развития нашей планеты в геологическом времени неизбежно наблюдаются элементы некоторой повторяемости, которые находят свое выражение и в больших геологических циклах большой длительности, и во вмещающихся в эти циклы, как их части, многовековых, вековых и малых климатических периодах, и циклах как современной эпохи, так и эпох более ранних.

2. Вся совокупность циклических изменений условий существования планеты разной длительности (больших и малых), определяющая детали спирали ее развития, составляет единую взаимно связанную стройную систему явлений, укладывающихся друг в друге и имеющих общее подчинение.

3. Для больших геологических циклов и малых климатических периодов и циклов характерны их взаимная неотрывность и параллелизм в ходе развития структурных изменений литосферы и климатических изменений атмосферы и гидросферы.

4. Каждое структурное изменение подразумевает происходящее параллельно ему в ходе времени изменение климатическое, и наоборот.

5. Циклические климатические колебания современной геологической эпохи и эпох прежних, с одной стороны, а равно системы, представляющие собой тектонические движения (in statu nascendi) и новейшие тектонические движения, именуемые неотектоникой, с другой, создаются од

ними и теми же причинами, что определяет неразрывную связь между этими двумя группами явлений.

6. При взаимной зависимости и параллелизме структурных и климатических изменений невозможно применить к объяснению структурных явлений действия внутренних сил Земли, ибо это оторвало бы структурные явления от климатических, поскольку к последним внутренние явления планеты явно не имеют отношения. Таким образом, принятие только внутренних причин для объяснения изменений планет лишило бы возможности разъяснить одни и те же причины для тех и других изменений.

7. Поскольку в ходе изменений климатов и структур Земли увеличение ледников на материковых площадях и на горных поднятиях развиваются параллельно с изменением структур, то нельзя для объяснения этих двух групп явлений применять разные причины. Эти причины являются едиными. Нельзя поэтому к изменениям структур применять внутренние силы, а оледенения объяснять силами внеземными. Причины и того, и другого одни и те же. Эти причины определяются теми гравитационными силами, которые создаются при движении Земли, в частности при ее вращении. Это относится как к изменениям циклических проявлений современной эпохи и эпох прежних в структурах и климате, так и к тем изменениям, которые создаются в ходе данного геологического цикла.

8. Только на основе движения Земли, в целом, можно понять кратное соотношение тектонических периодов развития планеты с космическим годом, а равно только на этой основе понятными становятся прецессионные и приливообразующие воздействия Солнца и Луны на тело нашей планеты, создающие деформацию коры планеты, т. е. ее тектонику.

9. Для объяснения цикличности горообразования и движения материков в истории нашей планеты приходится учитывать не только вращение Земли, но и ее поступательное движение.

10. Неясно, нужно ли при толковании геологических циклов вводить непосредственное действие Галактики на планету или это действие передается через Солнце и Луну; во всяком случае связь больших циклов с галактическими влияниями едва ли можно оспаривать.

11. Поднятие гор проще понять быть может как прилив твердых масс, аналогичных приливу водному. Напряжения, его создающие, накопляются постепенно в течение больших промежутков времени.

12. На основании установленной прочной связи климатических и структурных изменений никак нельзя тектонические явления считать явлениями только литосферы. Они являются результатом взаимодействия литосферы коровой и подкоровой с другими оболочками Земли - гидросферой и атмосферой.

13. Изменения в ходе развития фаз геологических циклов суммируются тем, что два конца геологического цикла - начало и окончание имеют следующие совпадения тектонических и климатических явлений:

14. Вымирание больших групп животного мира и связанные с этим смены семейств и родов приурочены к концам геологических циклов; вымирание растений происходит немного раньше. Есть основание предполагать, что природные судьбы животного и растительного миров планеты определяются фазами геологических циклов. Они были бы иными, если бы планета была неподвижной.

15. Вращение Земли в современную эпоху и изменения ее скорости во многом определяют судьбы животного и растительного миров.

16. На основании данных об изменениях отношений гидросферы и литосферы в ходе геологического времени пора признать, что следует отказаться от термальных толкований тектонических изменений планеты, а перейти к динамическому ее толкованию на основе взаимодействия оболочек Земли.

17. Это значит, что тектонические явления рождаются в пульсациях вращательного режима Земли, а вовсе не в ее термине, которая играет только второстепенную роль.

В итоге всего вышеизложенного, можно сказать, что при анализе изменений геологических явлений во времени нами в полной мере выяснены три важных момента: а) надо признать неотрывность климатических и структурных изменений в ходе геологического времени, б) надо признать невозможность, в силу этого, объяснить изменения в теле планеты одними внутренними причинами и, наконец, в) признать надо участие природных вод во всех циклических изменениях Земли, от коротких климатических периодов через многовековые до геологического цикла и его фаз.

Последний факт особенно важен, поскольку он говорит о связи жизни литосферы с природными водами, мысль о котором поставлена в заглавии этого труда. Мы подходили к мысли, о влиянии приливов на геотектонику; а это значит, что приливы не только уменьшили скорость вращения планеты, но создавали давление, действующее на тело Земли и создающее в нем нарушения, приводящие к поднятиям и опусканиям. Иначе говоря, изменения структуры литосферы создаются с участием в основном приливных волн океанических вод. Об этом следует постоянно помнить.

Климатические же изменения Земли, с которыми мы познакомились выше, дали нам представление о том, что в этих изменениях имеется целая иерархия изменений начиная от суточного цикла до огромного геологического цикла и его фаз. Краткосрочные изменения носят название современных климатических периодов, или циклов. Поднимаясь по этой иерархии вверх от малого к более крупному, мы приблизимся к фазам геологического цикла и, наконец, к суммирующему все эти фазы самому циклу - геологическому году, охватывающему огромное геологическое время.

Как мы убедились выше, если характеризовать фазы цикла, то никак нельзя ограничиваться только явлениями в литосфере, ибо цикл, как и меньшие периоды, охватывает и литосферу, и все другие оболочки Земли. Могло бы казаться, что цикл и фазы относятся к литосфере, а более мелкие периоды ее не касаются, а отражаются только в изменениях атмосферы и гидросферы. Но это не так. Как малые циклы, именуемые климатическими периодами, так и большие геологические промежутки колебаний затрагивают все земные оболочки.

Именно поэтому была неудачна попытка Э. Ога объяснить цикл только причинами, относящимися к литосфере.

Об этом я писал 30 лет назад. Не повторяя целиком развитой тогда аргументации, изложу ее в основных чертах.

У Ога получилось деление на три фазы: орогенезис, литогенезис и глиптогенезис. Но эти фазы накладываются во времени друг на друга, а не четко разделяются: поднятие гор требует одновременного отложения осадков, т. е. литогенезиса, а когда на одних местах Земли происходит отложение осадков - литогенезис, тогда на других происходит глиптогенезис. Именно поэтому я предложил иное деление фаз цикла: ледниковая, умеренная и ксеротермическая. Нетрудно отдать себе отчет в том, что здесь основой характеристики фаз являются природные воды и их количество на поверхности Земли в разные фазы.

Далее, неопровержимым является сейчас положение о связи и единстве всех видов вод нашей планеты, и земные воды мы должны представлять себе как единое целое. Поэтому указанные изменения количества вод на поверхности могут происходить только за счет перераспределения вод этого целого. В последнее время в основу гидрогеологии поставлена проблема формирования подземных вод.

Проследить формирование подземных вод удобнее всего на основе единства всех природных вод. Это обстоятельство удостоверяет неразрывность связи подземных вод с материковыми и океаническими. С другой стороны, материковые воды, наземные и подземные, неотрывны от вод океанических, и убыль вод в океане приводит к увеличению их на материках, и наоборот. Без знания этих основных положений нельзя понять судеб природных вод на Земле и вместе тем геологических циклов. Природные воды оказываются здесь, таким образом, основным индикатором различий геологических фаз, определяя разную их увлажненность, что дает и климатические, и биологические характеристики.

Понятие увлажненности, введенное в науку Шнитниковым, имеет чрезвычайно важное значение. Шнитников ярко и убедительно обрисовал в своей книге (1957) увлажненность для малых колебательных периодов, от годового цикла до циклов многовековых. Охарактеризовать и индивидуализировать их можно тоже только учитывая увлажненность, т. е. состояние природных вод Земли. Я ссылаюсь здесь на факты, изложенные в его прекрасной книге. Повторять и перелагать здесь связанные с этим факты было бы неуместно. Но общий вывод еще раз повторить можно; это третье положение, которым мы закончим изложение главы: во всех изменениях в «жизни» Земли, от коротких периодов через многовековые до смен фаз геологического цикла и смен циклов во времени, обязательно участие природных вод, которыми определяется количество фаз.

Если разъяснению третьего из трех положений, выдвинутых в этой главе, мы посвятили ее конец, то к положению второму и первому мы вернемся в дальнейшем. Второе положение говорит о невозможности объяснить изменения планеты одними внутренними причинами. Разъяснение его позволит нам вернуться к положению первому - о неразрывности изменений климатических и структурных - и сделать из него надлежащие выводы о причинах изменения структур Земли.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

В 2014 году в центральном районе Ямальского полуострова был найден странный провал в земле: круглая воронка имела диаметр около 20 метров и глубину около 50 метров. Ее происхождение с тех пор оставалось загадкой. Группа ученых из МГУ, исследовав пробы многолетнемерзлых пород, установила, что эта воронка сформировалась благодаря явлению, ранее не наблюдавшемуся на Земле. Опубликованная на прошлой неделе в журнале Scientific Reports статья описывает ее формирование в терминах криовулканизма, тем самым не только предлагая новый механизм образования этих необычных кратеров, но и впервые описывая земной криовулкан.

Летом 2014 года в центральной части полуострова Ямал неподалеку от газового месторождения Бованенковское было найдено необычное геологическое образование: почти круглый кратер диаметром 20 метров и глубиной около 50 метров (рис. 1). Было выдвинуто множество гипотез о его происхождении, включая падение метеорита и миграцию биогенных газов из-за оттаивания вечной мерзлоты (см., например, M. Leibman et al., 2014. New permafrost feature-deep crater in central Yamal (West Siberia, Russia) as a response to local climate fluctuations , V. Olenchenko et al., 2015. Results of geophysical surveys of the area of «Yamal crater», the new geological structure), но все они имели свои недостатки. В принципе, образование кратероподобных структур в результате геокриологических процессов - явление редкое, но не экстраординарное (J. Mackay, 1979. Pingos of the Tuktoyaktuk Peninsula Area, Northwest Territories). К примеру, в 2017 году на Ямале было зарегистрировано формирование двух похожих кратеров, но значительно меньшего размера.

Ямальский кратер находится в зоне вечной мерзлоты со среднегодовыми температурами от −1°C до −5°C и объемной долей льда 30–65%, часто сконцентрированного в ледяных линзах . Благодаря современным технологиям даже удалось выяснить примерное время формирования структуры: до 2013 года, по данным космических снимков, на месте кратера находился крупный бугор пучения (см. картинку дня «Пинго или бугры пучения»), около 8 метров в высоту и 50–55 метров в диаметре.

По линии, пересекающей кратер, ученые пробурили несколько скважин и получили керны (цилиндрические столбики породы, вынимаемые из скважины) многолетнемерзлых пород (рис. 2). Одна из скважин, находившаяся в пяти метрах к северу от кратера, вскрыла крупную линзу льда на глубине 5,8 м. Несмотря на то, что глубина этой скважины была 17 м, до нижней границы линзы добраться не удалось. Из этой линзы и соседних скважин были отобраны пробы для дальнейшего изучения. Они состояли изо льда, гуминовых кислот и минеральных включений. Анализы показали, что ученые имеют дело с двумя разными типами вечной мерзлоты, содержащей древние морские отложения: первый тип почти не тронут термокарстом (процессом оттаивания и разрушения вечной мерзлоты), а второй, наоборот, интенсивно им переработан. Лед в пробах первого типа содержал малые количества металлов и органического углерода, а лед из проб второго типа содержал углеродные соединения органического происхождения до 3,5 г/литр и включения темно-коричневых растворов щелочного состава (pH 8–9,5). Другое различие наблюдалось между ледяной и осадочной составляющими проб: концентрация металлов была незначительной в древних осадках (за исключением SiO 2 , CaO, Na 2 O) и сравнительно высокой в ледяных пробах. Это может быть интерпретировано как результат длительного взаимодействия грунтовых и талых вод, что ведет к мысли, что на месте кратера когда-то существовало озеро с большой оттаявшей зоной под ним (таликом).

Главной особенностью изученных образцов является необычно высокая концентрация газов, достигающая в отдельных пробах 20 объемных процентов. В основном это CO 2 и N 2 . А вот метана - предполагаемого виновника образования кратера - оказалось мало (первые проценты). Это, а также результаты изотопного анализа, указывало, что источник газов не месторождение Бованенково, как считалось ранее. Преобладание среди углеводородов высших нормальных алканов (C 19 H 40 и соединения с бо льшим числом атомов углерода) показало, что они образовались в результате разложения растительных останков.

По результатам математического моделирования была установлена последовательность событий, предшествовавших формированию кратера. Сначала под долгоживущим термокарстовым озером (жидкая вода при положительной температуре) вечная мерзлота оттаивает (рис. 3, А), формируя талик размером примерно, как у современного сухого озера, в центре которого находится кратер. По оценкам геокриологов, формирование 60–70 метровой зоны протаивания занимает примерно 3000 лет. При высыхании озера оттаявшая зона начинает обратно замерзать от краев к центру (рис. 3, В). На финальных стадиях жизни озера его дно промерзает, формируя ледяную крышку над еще не до конца замерзшим таликом (рис. 3, С). Оставшаяся вода под давлением растущего льда начинает выжиматься наружу, формируя бугор пучения, существовавший последнюю сотню лет (рис. 3, D).

На основании содержания газов в изученных образцах предполагается, что растворенные газы составляли около 14 объемных процентов талика. При замерзании часть этих газов мигрировала в окружающие породы, избежав замерзания, а часть (в основном - хорошо растворимый в воде CO 2) осталась в талике, увеличивая давление и способствуя образованию бугра пучения. Из-за воды под промерзшей крышкой льда толщиной 6–8 метров давление в талике может достигать 5 бар, но для ее прорыва требуется около 10 бар. Это значение вполне достижимо, если учесть вклад газовой составляющей. В нижней же части талика давление доходит до 15 бар, что делает возможным образование клатратов CO 2 (сценарий, реализуемый если жидкость насыщена газом). Если бы газа было мало, то при разрушении пинго произошел бы только небольшой выброс воды, но никак не извержение и образование кратера.

Перед извержением в талике наблюдалась слоистая структура: талые почвы с большим количеством клатратов углекислого газа внизу, вода с растворенным газом в середине и преимущественно газ в верхней части (рис. 4, А). Извержение было спровоцировано формированием ледяных клиньев по трещинам в промерзшей шапке и состояло из трех стадий:
1) Пневматическая стадия (первые минуты): дегазация из верхней камеры талика, выброс струй углекислого газа (рис. 4, В). Разлет почвы на большие дистанции и повреждение растительности холодной газовой струей.
2) Гидравлическая стадия (несколько часов): излияние воды из кратера (рис. 4, С) - сброс давления вызвал вспенивание воды, насыщенной газом (эффект, сходный со струей шампанского после удаления пробки). Полное пробитие ледяной шапки и начало формирования вала вокруг кратера.
3) Фреатическая стадия (5–25 часов): разложение газовых гидратов в нижнем слое почвы и вынос её на поверхность с возникающей пеной (рис. 4, D). Так как разложение газовых гидратов - процесс достаточно медленный, то эта фаза является наиболее длительной частью извержения.

Такая реконструкция событий позволяет говорить о том, что образование ямальского кратера - полноценное явление, «Элементы», 07.02.2014 и Анализ гравитационного поля Энцелада тоже указывает на наличие на нем жидкой воды , «Элементы», 04.07.2014, а также статью J. S. Kargel, 1995. Cryovolcanism on the icy satellites). Следы прошлой криовулканической активности обильно встречаются во внешней области Солнечной системы. Серьезное изучение этих объектов началось в 1979–1989 годах, после пролетов зондов «Вояджеров» мимо ледяных лун газовых гигантов, однако их непосредственное исследование до настоящего момента было недоступно, так как ни одного криовулкана на Земле обнаружено не было. Теперь, похоже, ученые получают такую возможность.

Ранее предполагалось, что для криовулканизма обязателен источник тепла, расположенный под криовулканом. Отчасти, это верно, однако обсуждаемая работа показывает, что подобные процессы могут происходить не только за счет нагрева воды, но и за счет ее кристаллизации: кристаллизация льда в газонасыщенных системах приводит к скачкам давления и может, например, служить объяснением водяных джетов на Энцеладе (J. H. Waite Jr et al., 2009. Liquid water on Enceladus from observations of ammonia and 40 Ar in the plume). Полученные при исследовании ямальского кратера данные могут позволить по-новому взглянуть на извержения на ледяных телах.

Цикл геологических наук. Оболочечное строение Земли.

Геология - одна из фундаментальных естественных наук, изучающая строение, состав, происхождение и развитие Земли. Она исследует сложные явления и процессы, протекающие на ее поверхности и в недрах. Современная геология опирается на многовековой опыт познания Земли и разнообразные специальные методы исследования. В отличии от других наук о Земле, геология занимается исследованием ее недр. Основные задачи геологии состоят в изучении наружной каменной оболочки планеты - земной коры и взаимодействующих с ней внешних и внутренних оболочек Земли (внешние - атмосфера, гидросфера, биосфера; внутренние - мантия и ядро).

Объектами непосредственного изучения геологии являются минералы, горные породы, ископаемые органические остатки, геологические процессы.

Геология тесно связана с другими науками о Земле, например с астрономией, геодезией, географией, биологией. Геология опирается на такие фундаментальные науки как математика, физика, химия. Геология является синтетической наукой, хотя в то же время распадается на множество взаимосвязанных отраслей, научных дисциплин, изучающих Землю в разных аспектах и получающих сведения об отдельных геологических явлениях и процессах. Так, изучением состава литосферы занимаются: петрология, исследующая магматические и метаморфические породы, литология, изучающая осадочные горные породы, минералогия - наука, изучающая минералы как природные химические соединения и геохимия - наука о распределении и миграции химических элементов в недрах земли.

Геологические процессы, формирующие рельеф земной поверхности, изучает динамическая геология, частью которой являются геотектоника, сейсмология и вулканология.

Раздел геологии, занимающийся изучением истории развития земной коры и Земли в целом, включает стратиграфию, палеонтологию, региональную геологию и носит название ╚Историческая геология.

Есть в геологии науки, имеющие большое практическое значение. Такие, как о месторождениях полезных ископаемых, гидрогеология, инженерная геология, геокриология.

В последние десятилетия появились и приобретают все большее значение науки связанные с исследованием космоса (космическая геология), дна морей и океанов (морская геология).

Наряду с этим есть геологические науки, находящиеся на стыке с другими естественными науками: геофизика, биогеохимия, кристаллохимия, палеоботаника. К таковым относятся также геохимия и палеогеография. Наиболее близкая и разносторонняя связь геологии с географией. Для географических наук, таких как ландшафтоведение, климатология, гидрология, океанография, более всего важны геологические науки, изучающие процессы, влияющие на формирование рельефа земной поверхности и историю образования земной коры всей Земли.

В геологии применяют прямые, косвенные, экспериментальные и математические методы.

Прямые - это методы непосредственных наземных и дистанционных (из тропосферы, космоса) изучений состава и строения земной коры. Основной - геологическая съемка и картирование. Изучение состава и строения земной коры производится путем изучения естественных обнажений (обрывы рек, оврагов, склоны гор), искусственных горных выработок (каналы, шуффы, карьеры, шахты) и буровых скважин (мах - 3,5 - 4 км. в Индии и ЮАР, Кольская скважина - более 12 км., проект 15 км.) В горных районах можно наблюдать естественные разрезы в долинах рек, вскрывающих толщи горных пород, собранных в сложные складки и поднятых при горообразовании с глубин 16 - 20 км. Таким образом, метод непосредственного наблюдения и исследования слоев горных пород применим лишь к небольшой, самой верхней части земной коры. Лишь в вулканических областях по извергнутой из вулканов лаве и по твердым выбросам можно судить о составе вещества на глубинах 50 - 100 км. и больше, где обычно располагаются вулканические очаги.

Косвенные - геофизические методы, которые основаны на изучении естественных и искусственных физических полей Земли, позволяющие исследовать значительные глубины недр.

Различают сейсмические, гравиметрические, электрические, магнитометрические и др. геофизические методы. Из них наиболее важен сейсмический (╚сейсмос╩ - трясение) метод, основанный на изучении скорости распространения в Земле упругих колебаний, возникающих при землетрясениях или искусственных взрывах. Эти колебания называются сейсмическими волнами, которые расходятся от очага землетрясений. Бывают 2 типа: продольные Vp, возникающие как реакция среды на изменения объема, распространяются в твердых и жидких телах и характеризуются наибольшей скоростью, и поперечные волны Vs, представляющие реакцию среды на изменение формы и распространяются только в твердых телах. Скорость движения сейсмических волн в разных горных породах различна и зависит от их упругих свойств и их плотности. Чем больше упругость среды, тем быстрее распространяются волны. Изучение характера распространения сейсмических волн позволяет судить о наличии различных оболочек шара с разной упругостью и плотностью.

Экспериментальные исследования направлены на моделирование различных геологических процессов и искусственное получение различных минералов и горных пород.

Математические методы в геологии направлены на повышение оперативности, достоверности и ценности геологической информации.

Выделяют 3 оболочки Земли: ядро, мантию и земную кору.

Ядро - наиболее плотная оболочка Земли. Полагают, что внешнее ядро находится в состоянии, приближающемся к жидкому. Температура вещества достигает 2500 - 3000 0С, а давление ~ 300Гпа. Внутреннее ядро, предположительно находится в твердом состоянии. Состав внешнего и внутреннего ~ одинаков - Fe - Ni, близкий к составу метеоритов.

Мантия - самая крупная оболочка Земли. Масса - 2/3 массы планеты. Верхняя мантия характеризуется вертикальной и горизонтальной неоднородностью. Под континентами и океанами ее строение существенно отличается. В океанах на глубине ~ 50 км., а материках - 80 - 120 км. начинается слой пониженных сейсмических скоростей, который носит название сейсмического волновода или астеносферы (т.е. геосфера ╚без прочности╩) и отличается повышенной пластичностью. (Волновод распространяется под океанами до 300 - 400 км., под материками - 100- 150 км.) К ней приурочено большинство очагов землетрясений. Полагают, что в ней возникают магматические очаги, а также зона подкорковых конвекционных течений и зарождение важнейших эндогенных процессов.

В. В. Белоусов объединяет земную кору, верхнюю мантию, включая астеносферу в тектоносферу.

Промежуточный слой и нижняя мантия отличаются более однородной средой, чем верхняя мантия.

Верхняя мантия сложена преимущественно ферро-магнезиальными силикатами (оливин, пироксены, гранаты), что соответствует перидотитовому составу пород. В переходном слое С основной минерал - оливин.

Химический состав: оксиды Si, Al? Fe (2+, 3+), Ti, Ca, Mg, Na, K, Mn. Преобладают Si и Mg.

Земная кора - это верхняя оболочка Земли, сложенная магматическими, метаморфическими и осадочными породами, мощностью от 7 до 70 - 80 км. Это наиболее активный слой Земли. Для нее характерен магматизм и проявления тектонических процессов.

Нижняя граница земной коры симметрична поверхности Земли. Под материками она глубоко опускается в мантию, и под океанами приближается к поверхности. Земная кора с верхней мантией до верхней границы астеносферы (т.е. без астеносферы) образует литосферу.

В вертикальном строении земной коры выделяют три слоя, сложенных различными по составу, свойствам и происхождению породам.

1 слой - верхний или осадочный (стратосфера) сложен осадочными и вулканогенно-осадочными породами, глинами, глиняными сланцами, песчаными, вулканогенными и карбонатными породами. Слой покрывает почти всю поверхность Земли. Мощность в глубоких впадинах достигает 20 - 25 км., в среднем - 3 км.

Для пород осадочного чехла характерна слабая дислоцированность, сравнительно низкие плотности и небольшие изменения, соответствующие диагенетическим.

2 слой - средний или гранитный (гранито - гнейсовый), породы имеют сходство со свойствами гранитов. Сложена: гнейсами, гранодиоритами, диоритами, окализами, а так же габбро, мраморами, силинитами и др.

Породы этого слоя разнообразны по сотаву и степени их дислоцированности. Они могут быть неизменными и метаморфированными. Нижняя граница гранитного слоя называется сейсмический раздел Конрада. Мощность слоя - от 6 до 40 км. На отдельных участках Земли этот слой отсутствует.

3 слой - нижний, базальтовый состоит из более тяжелых пород, которые по свойствам близки к магматическим породам, базальтам.

В отдельных местах между базальтовым слоем и мантией залегает так называемый эклогитовый слой с более высокой плотностью, чем базальтовый.

Средняя мощность слоя в континентальной части ~ 20 км. Под горными хребтами достигает 30 - 40 км., а под впадинами снижается до 12 - 13 и 5-7 км.

Средняя мощность земной коры в континентальной части (Н. А. Белявский) -40,5 км., мин. - 7 - 12 км. в океанах, макс. - 70 - 80 км. (высокогорье на континентах).

Геология и цикл геологических наук

Геология – одна из фундаментальных естественных наук, изучающая строение, состав, происхождение и развитие Земли. Она исследует сложные явления и процессы, протекающие на ее поверхности и в недрах. Современная геология опирается на многовековой опыт познания Земли и разнообразные специальные методы исследования. В отличии от других наук о Земле, геология занимается исследованием ее недр. Основные задачи геологии состоят в изучении наружной каменной оболочки планеты – земной коры и взаимодействующих с ней внешних и внутренних оболочек Земли (внешние – атмосфера, гидросфера, биосфера; внутренние – мантия и ядро).

Объектами непосредственного изучения геологии являются минералы, горные породы, ископаемые органические остатки, геологические процессы.

Геология тесно связана с другими науками о Земле, например с астрономией, геодезией, географией, биологией. Геология опирается на такие фундаментальные науки как математика, физика, химия. Геология является синтетической наукой, хотя в то же время распадается на множество взаимосвязанных отраслей, научных дисциплин, изучающих Землю в разных аспектах и получающих сведения об отдельных геологических явлениях и процессах. Так, изучением состава литосферы занимаются: петрология, исследующая магматические и метаморфические породы, литология, изучающая осадочные горные породы, минералогия – наука, изучающая минералы как природные химические соединения и геохимия – наука о распределении и миграции химических элементов в недрах земли.

Геологические процессы, формирующие рельеф земной поверхности, изучает динамическая геология, частью которой являются геотектоника, сейсмология и вулканология.



Раздел геологии, занимающийся изучением истории развития земной коры и Земли в целом, включает стратиграфию, палеонтологию, региональную геологию и носит название «Историческая геология.

Есть в геологии науки, имеющие большое практическое значение. Такие, как о месторождениях полезных ископаемых, гидрогеология, инженерная геология, геокриология.

В последние десятилетия появились и приобретают все большее значение науки связанные с исследованием космоса (космическая геология), дна морей и океанов (морская геология).

Наряду с этим есть геологические науки, находящиеся на стыке с другими естественными науками: геофизика, биогеохимия, кристаллохимия, палеоботаника. К таковым относятся также геохимия и палеогеография. Наиболее близкая и разносторонняя связь геологии с географией. Для географических наук, таких как ландшафтоведение, климатология, гидрология, океанография, более всего важны геологические науки, изучающие процессы, влияющие на формирование рельефа земной поверхности и историю образования земной коры всей Земли.

Абсолютный и относительный возраст земли, геохронологическая шкала.

Возраст Земли как планеты по последним данным оценивается ~ 4,6 млрд. лет. Изучение метеоритов и лунных пород также подтверждает эту цифру. Однако самые древние породы Земли, доступные непосредственному изучению, имеют возраст около 3,8 млрд. лет. Поэтому весь более древний этап истории Земли носит название до геологической стадии. Объектом же геологического изучения является история Земли за последние 3,8 млрд. лет, которая выделяется в ее геологическую стадию.

Для выяснения закономерностей и условий образования г.п. необходимо знать последовательность их образования и возраст, т.е. установить их геологическую хронологию.

Различают относительный возраст г.п. (относительная геохронология) иабсолютный возраст г.п. (абсолютная геохронология).

Установлением возраста г.п. занимается наука стратиграфия (лат. Stratum - слой).

Абсолютный возраст горных пород и методы его определения.

Абсолютная геохронология устанавливает возраст г.п. в единицах времени. Определение абсолютного возраста необходимо для корреляции и сопоставления биостратиграфических подразделений различных участков Земли, а также установления возраста лищенных палеонтологических остатков фанерозойских и долембрийских пород.

К методам определения абсолютного возраста пород относятся методы ядерной (или изотопной геохронологии) и не радиологические методы

Методы ядерной геохронологии в наше время являются наиболее точными для определения абсолютного возраста г.п., в основе которых лежит явление самопроизвольного превращения радиоактивного изотопа одного элемента в стабильный изотоп другого. Суть методов состоит в определении соотношений между количеством радиоактивных элементов и количеством устойчивых продуктов их распада в горной породе. По скорости распада изотопа, которая для определенного радиоактивного изотопа есть величина постоянная, количеству радиоактивных и образовавшихся стабильных изотопов, рассчитывают время, прошедшее с начала образования минерала (соотв. И породы).

Разработано большое число радиоактивных методов определения абсолютного возраста: свинцовый, калиево-аргоновый, рубидиево-стронциевый, радиоуглеродный и др. (выше установленный возраст Земли 4,6 млрд. лет не установлен с применением свинцового метода).

Не радиологические методы уступают по точности ядерным.

Соляной метод был применен для определения возраста Мирового океана. Он основан на предположении, что воды океана были первоначально пресными, то, зная современное количество солей с континентов, можно определить время существования Мирового океана (~ 97 млн. лет).

Седиментационный метод основан на изучении осадочных пород в морях. Зная объем и мощность морских отложений в з.к. в отдельных системах и объем минерального вещества, ежегодно сносимого в моря с континентов можно вычислить продолжительность их наполнения.

Биологический метод базируется на представлении о сравнительно равномерном развитии орг. мира. Исходный параметр - продолжительность четвертичного периода 1,7 - 2 млн. лет.

Метод подсчета слоев ленточных глин, накапливающихся на периферии тающих ледников. Глинистые осадки откладываются зимой, а песчаные летом и весной, т.о. каждая пара таких слоев результат годичного накопления осадков (последний ледник на Балтийском море прекратил свое движение 12 тысяч лет назад).

Цвет минерала

Вопрос о природе цветовой окраски минералов очень сложен. Природа окрасок некоторых минералов еще не определена. В лучшем случае цвет минерала определяется спектральным составом отражаемого минералом светового излучения или обуславливается его внутренними свойствами, каким-либо химическим элементом, входящим в состав минерала, тонко рассеянными включениями других минералов, органического вещества и другими причинами. Красящий пигмент иногда бывает, распространен неравномерно, полосами, давая разноцветные рисунки (например, у агатов).

Цвет некоторых прозрачных минералов меняется в связи с отражением падающего на них света от внутренних поверхностей, трещин или включений. Это явления радужной окраски минералов халькопирита, пирита и иризации – голубые, синие переливы лабрадора.

Некоторые минералы многоцветны (полихромные) и имеют разную окраску по длине кристалла (турмалин, аметист, берилл, гипс, флюорит и др.).

Цвет минерала иногда может быть диагностическим признаком. Например, водные соли меди имеют зеленый или синий цвет. Характер цвета минералов определяется визуально обычно путем сравнения наблюдаемого цвета с общеизвестными понятиями: молочно-белый, светло-зеленый, вишнево-красный и т.п. этот признак не всегда характерен для минералов, так как цвета многих из них сильно варьируют.

Цвет черты

Более надежным диагностическим признаком, чем цвет минерала, является цвет его порошка, оставляемого при царапании испытуемым минералом матовой поверхности фарфоровой пластинки. В ряде случаев совпадает с цветом самого минерала, в других он совсем иной. Так, у киновари окраска минерала и порошка красные, а у латунно-желтого пирита черта зеленовато-черная. Черту дают мягкие и средней твердости минералы, а твердые лишь царапают пластинку и оставляют на ней борозды.

Прозрачность

По своей способности пропускать свет минералы делятся на несколько групп:

  • прозрачные (горный хрусталь, каменная соль) – пропускающие свет, через них ясно видны предметы;
  • полупрозрачные (халцедон, опал) – предметы, через них плохо видны предметы;
  • просвечивающие только в очень тонких пластинках;
  • непрозрачные – свет не пропускают даже в тонких пластинках (пирит, магнетит).

Блеск

Блеском называется способность минерала отражать свет. Строгого научного определения понятия блеск не существует. Различают минералы с металлическим блеском как у полированных минералов (пирит, галенит); с полуметаллическим (алмазным, стеклянным, матовым, жирным, восковым, перламутровым, с радужными переливами, шелковистым). Многие физические свойства являются важными диагностическими признаками при определении минералов.

Спайность

Явление спайности у минералов определяется сцеплением частиц внутри кристаллов и обусловлено свойствами их кристаллических решеток. Раскол минералов происходит легче всего параллельно наиболее плотным сеткам кристаллических решеток. Эти сетки наиболее часто и в наилучшем развитии проявляются и во внешнем ограничении кристалла.

Количество плоскостей спайности у разных минералов неодинаково, достигает шести, причем степень совершенства разных плоскостей может быть неодинаковой. Различают следующие виды спайности:

  • весьма совершенную , когда минерал без особого усилия расщепляется на отдельные листочки или пластинки, обладающие гладкими блестящими поверхностями – плоскостями спайности (гипс).
  • совершенную , обнаруживаемую при легком ударе по минералу, который рассыпается на кусочки, ограниченные только ровными блестящими плоскостями. Неровные поверхности не по плоскости спайности получаются очень редко (кальцит раскалывается на правильные ромбоэдры разной величины, каменная соль – на кубики, сфалерит – на ромбические додекаэдры).
  • среднюю , которая выражается в том, что при ударе по минералу образуются изломы как по плоскостям спайности, так и по неровным поверхностям (полевые шпаты – ортоклаз, микроклин, лабрадор)
  • несовершенную . Плоскости спайности в минерале обнаруживаются с трудом (апатит, оливин).
  • весьма несовершенную . Плоскости спайности в минерале отсутствуют (кварц, пирит, магнетит). В то же время иногда кварц (горный хрусталь) встречается в хорошо ограненных кристаллах. Поэтому следует отличать естественные грани кристалла от плоскостей спайности, выявляющихся при изломе минерала. Плоскости могут быть параллельны граням и отличаться более «свежим» видом и более сильным блеском.

Излом

Характер поверхности, образующейся при разломе (расколе) минерала различный:

1. Ровный излом , если раскол минерала происходит по плоскостям спайности, как, например, у кристаллов слюды, гипса, кальцита.

2. Ступенчатый излом получается при наличии в минерале пересекающихся плоскостей спайности; он может наблюдаться у полевых шпатов, кальцита.

3. Неровный излом характеризуется отсутствием блестящих участков раскола по спайности, как, например, у кварца.

4. Зернистый излом наблюдается у минералов с зернисто-кристаллическим строением (магнетит,хромит).

5. Землистый излом характерен для мягких и сильно пористых минералов (лимонит, боксит).

6. Раковистый – с выпуклыми и вогнутыми участками как у раковин (апатит, опал).

7. Занозистый (игольчатый) – неровная поверхность с ориентированными в одном направлении занозами (селенит, хризотил-асбест, роговая обманка).

8. Крючковатый – на поверхности раскола возникают крючковатые неровности (самородная медь, золото, серебро). Этот вид излома характерен для ковких металлов.

Твердость

Твердость минералов – это степень сопротивляемости их наружной поверхности проникновению другого, более твердого минерала и зависит от типа кристаллической решетки и прочности связей атомов (ионов). Определяют твердость царапанием поверхности минерала ногтем, ножом, стеклом или минералами с известной твердостью из шкалы Мооса, в которую входят 10 минералов с постепенно возрастающей твердостью (в относительных единицах).

Относительность положения минералов по степени возрастания их твердости видна при сравнении: точные определения твердости алмаза (твердость по шкале равна 10) показали, что она более чем в 4000 раз выше, чем у талька (твердость – 1).

Шкала Мооса

Главная масса минералов имеет твердость от 2 до 6. Более твердые минералы – это безводные окислы и некоторые силикаты. При определении минерала в породе необходимо убедиться, что испытывается именно минерал, а не порода.

Удельный вес

Удельный вес изменяется от 0,9 до 23 г/см 3 . У большей части минералов он составляет 2 – 3,4 г/см 3 , рудные минералы и самородные металлы имеют наивысший удельный вес 5,5 – 23 г/см 3 . Точный удельный вес определяется в лабораторных условиях, а в обычной практике – «взвешиванием» образца на руке:

Легкие (с удельным весом до 2,5 г/см3) – сера, каменная соль, гипс и другие минералы;

Средние (2,6 – 4 г/см3) – кальцит, кварц, флюорит, топаз, бурый железняк и другие минералы;

С большим удельным весом (больше 4). Это барит (тяжелый шпат) – с удельным весом 4,3 – 4,7, сернистые руды свинца и меди – удельный вес 4,1 – 7,6 г/см 3 , самородные элементы – золото, платина, медь, железо и т.д. с удельным весом от 7 до 23 г/см 3 (осмистый иридий – 22,7 г/см 3 , платиновый иридий – 23 г/см 3).

Магнитность

Свойство минералов притягиваться магнитом или отклонять магнитную стрелку компаса является одним из диагностических признаков. Сильно магнитными минералами являются магнетит и пирротин.

Ковкость и хрупкость

Ковкими являются минералы, изменяющие свою форму при ударе молотком, но не рассыпающиеся (медь, золото, платина, серебро). Хрупкие – рассыпаются при ударе на мелкие кусочки.

Электропроводность

Электропроводность минералов – это способность минералов проводить электрический ток под действием электрического поля. В противном случае минералы относятся к диэлектрикам, т.е. не проводящим ток.

Горючесть и запах

Некоторые минералы загораются от спички и создают характерные запахи (сера – сернистого газа, янтарь – ароматический запах, озокерит – удушливый запах угарного газа). Запах сероводорода появляется при ударе по марказиту, пириту, при растирании кварца, флюорита, кальцита. При трении кусочков фосфорита друг о друга появляется запах жженой кости. Каолинит при смачивании приобретает запах печки.

Вкус

Вкусовые ощущения вызывают только хорошо растворимые в воде минералы (галит – соленый вкус, сильвин – горько соленый).

Шероховатость и жирность

Жирными, слегка мажущими являются тальк, каолинит, шероховатыми – боксит, мел.

Гигроскопичность

Это свойство минералов увлажняться, притягивая молекулы воды из окружающей среды, в том числе из воздуха (карналлит).

Некоторые минералы реагируют с кислотами. Для опознавания минералов, которые по химическому составу являются солями угольной кислоты, удобно пользоваться реакцией вскипания их со слабой (5 – 10%) соляной кислотой.

Факторы метаморфизма.

Изменение магматических и осадочных пород в твердом состоянии под воздействием эндогенных факторов и называется метаморфизмом.

Решающее влияние на метаморфизм горных пород оказывают давление, температура и флюиды.

Температура. Источниками тепла в земной коре являются распад радиоактивных элементов; магматические расплавы, которые, остывая, отдают тепло окружающим горным породам; нагретые глубинные флюиды; тектонические процессы и ряд других факторов. Геотермический градиент, т.е. количество градусов на 1 км глубины, меняется от места к месту на земном шаре и разница может составлять почти 100o С. В пределах устойчивых, жестких блоков земной коры, например на щитах древних платформ, геотермический градиент не превышает 6-10o С, в то время как в молодых растущих горных сооружениях может достигать почти 100o С. Температура резко ускоряет протекание химических реакций, способствует перекристаллизации вещества, сильно влияет на процессы минералообразования. Возрастание температуры приводит к обезвоживанию (дегидратации) минералов, формированию более высокотемпературных минеральных ассоциаций, лишенных воды, декарбонатизации известняков и т. д. Обычно метаморфические преобразования начинаются при Т выше 300o С, а прекращаются, когда Т достигает точки плавления развитых в данном месте горных пород.

Давление подразделяется на всестороннее (литостатическое), обусловленное массой вышележащих горных пород, и стрессовое, или одностороннее, связанное с тектоническими направленными движениями. Всестороннее литостатическое давление связано не только с глубиной, но также и с плотностью пород, и на глубине 10 км может превышать 200 мПа, а на глубине 30 км - 600-700 мПа. При геотермическом градиенте в 25 град/км плавление горных пород может начаться на глубине около 20 км. При высоких давлениях породы переходят в пластичное состояние- Одностороннее стрессовое давление лучше всего проявляется в верхней части земной коры складчатых зон и выражается в образовании определенных структурно-текстурных особенностей породы и специфических стресс-минералов, таких, как глаукофан, дистен и др. Стрессовое давление вызывает механические деформации горных пород, их дробление, рассланцевание, увеличение растворимости минералов в направлении давления. В подобные милонитизированные зоны проникают флюиды, под воздействием которых породы испытывают перекристаллизацию.

Флюиды, к которым относятся H2O, CO2, CO, CH4, H2, H2S, SO2 и другие переносят тепло, растворяют минералы горных пород, переносят химические элементы, активно участвуют в химических реакциях и играют роль катализаторов. Значение флюидов иллюстрируется тем, что в <сухих системах>, т. с. лишенных флюидов, даже при наличии высоких давлений и температур метаморфические изменения почти не происходят.

Осадочные горные породы.

Осадочные горные породы образовались на поверхности литосферы в результате накопления минеральных масс, полученных в процессе разрушения магматических, метаморфических и осадочных горных пород. Процессы разрушения горных пород литосферы и накопления новых пород на поверхности земли идут повсеместно: в пустынях, где энергичную работу ведет ветер; вдоль морских и океанических берегов, где волны перемещают обломочный материал; на дне глубоких частей морей и океанов, где отмирающие организмы дают начало толщам осадочных пород. Условия образования накладывают существенный отпечаток на облик осадочных пород. В одних случаях они состоят из обломков ранее разрушенных горных пород, в других - из скопления органических остатков, в третьих - из кристаллических зерен, выпавших из раствора.

Осадочные породы в зависимости от происхождения резко отличаются друг от друга. Поэтому их принято подразделять на три группы:

Обломочное происхождение

Химическое происхождение

Органогенное происхождение

Осадочные породы представляют особый интерес для строителей, так как они служат основаниями и средой для различных сооружений и повсеместно доступны в качестве строительных материалов. Они имеют вторичное происхождение, поскольку исходным материалом для их формирования являются продукты разрушения ранее существовавших пород. Процесс образования осадочных пород протекает по схеме: физическое и химическое выветривание пород, механический и химический перенос, отложение и накопление продуктов их разрушения и, наконец, уплотнение и цементация рыхлого осадка с превращением его в породу. Общими свойствами осадочных пород являются одинаковые формы залегания в виде пластов, с которыми связаны их характерные текстурные признаки - слоистость и пористость. Последняя особенно важна, так как оказывает большое влияние на физико-механические свойства пород: прочность, плотность и среднюю плотность, водопоглощение, морозостойкость, механическую обработку и др.

Осадочные породы отличаются многообразием структур с широким варьированием формы, размеров частиц и их соотношения у различных представителей. Для них характерно значительное разнообразие минеральных компонентов, более простых по химическому составу и являющихся преимущественно осадочными новообразованиями, совпадающими по составу с некоторыми магматическими минералами. Среди породообразующих минералов встречаются осажденные из водных растворов карбонаты, сульфаты, водный кремнезем; вторичные (глинистые) продукты выветривания материнских пород - каолинит, монтмориллонит; слюдистые минералы, гидроксиды А1 и Fe; реликтовые минералы, сохранившиеся без изменения, - магматический кварц, полевые шпаты, а также обломки пород различного генезиса и остатки организмов. Некоторые представители осадочных пород растворяются в воде, например каменная соль, гипс, известняки.

Классификация грунтов.

Классификация грунтов включает следующие таксономические единицы, выделяемые по группам признаков:

Класс - по общему характеру структурных связей;

Группа - по характеру структурных связей (с учетом их прочности);

Подгруппа - по происхождению и условиям образования;

Тип - по вещественному составу;

Вид - по наименованию грунтов (с учетом размеров частиц и показателей свойств);

Разновидности - по количественным показателям вещественного состава, свойств и структуры грунтов.

Класс природных скальных грунтов - грунты с жесткими структурными связями (кристаллизационными и цементационными) подразделяют на группы, подгруппы, типы, виды и разновидности согласно таблице 1.

Класс природных дисперсных грунтов - грунты с водноколлоидными и механическими структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности

Класс природных мерзлых грунтов* - грунты с криогенными структурными связями подразделяют на группы, подгруппы, типы, виды и разновидности

Класс техногенных (скальных, дисперсных и мерзлых) грунтов - грунты с различными структурными связями, образованными в результате деятельности человека, подразделяют на группы, подгруппы, типы и виды

Частные классификации по вещественному составу, свойствам и структуре скальных, дисперсных и мерзлых грунтов (разновидности) представлены в приложении Б.

По своему происхождению горные породы они подразделяются на:

Магматические, изверженные, образовавшиеся в результате застывания магмы; они имеют кристаллическую структуру и классифицируются как скальные грунты;

Осадочные; они образовались в результате разрушения и выветривания горных пород с помощью воды и воздуха и образуют скальные и нескальные грунты;

Метаморфические, которые образовались в результате действия на метаморфические и осадочные породы высоких температур и больших давлений; они классифицируются как скальные грунты.

Верховода, характеристика.

Верховодкой называют временные скопления подземных вод в зоне аэрации. Эта зона располагается на небольшой глубине от поверхности, над горизонтом грунтовых вод, где часть пор пород занята связанной водой, другая часть – воздухом.

Верховодка образуется над случайными водоупорами (или полуводоупорами), в роли, которых могут быть линзы глин и суглинков в песке, прослойки более плотных пород. При инфильтрации вода временно задерживается и образует своеобразный водоносный горизонт. Чаще всего это бывает связанно с периодом обильного снеготаяния, периодом дождей. В остальное время вода верховодки испаряется и просачивается в нижележащие грунтовые воды.

Другой особенностью верховодки является вохможность ее образования даже при отсутствии в зоне аэрации каких-либо водоупорных пропластков. Например, в толщу суглинков обильно поступает вода, но вследствие низкой водопроницаемости просачивание происходит замедленно и в верхней части толщи образуется верховодка. Через некоторое время эта вода рассасывается.

В целом для верховодки характерно: временный, чаще сезонный характер, небольшая площадь распространения, малая мощность и безнапорность. В легко водопроницаемых породах, например в песках, верховодка возникает сравнительно редко. Для нее наиболее типичны различные суглинки и лессовые породы.

Верховодка представляет значительную опасность для строительства. Залегая в пределах подземных частей зданий и сооружений (подвалы котельные) она может вызвать их подтопление, если заранее не были предусмотрены меры дренирования или гидроизоляции. В последнее время в результате значительных утечек воды (водопровод, бассейны) отмечено появление горизонтов верховодок на территории промышленных объектов и новых жилых районов, расположенных в зоне расположения лессовых пород. Это представляет серьезную опасность, так как грунты оснований снижают свою устойчивость, затрудняется эксплуатация зданий и сооружений.

При инженерно-геологических изысканиях, проводимых в сухое время года, верховодка не всегда обнаруживается. Поэтому ее появление для строителей может быть неожиданным.

Воды зоны аэрации.

Как правило, зона аэрации имеет слои грунта различные по своей водопроницаемости. Поэтому, во время выпадения дождей, в зоне аэрации может образовываться временный водоносный горизонт, который называется верховодкой. Верховодка особенно характерна при зимней оттепели и весной, когда в грунте ещё сохраняется водонепроницаемый слой сезонной мерзлоты, а тающий на поверхности снег обеспечивает интенсивное насыщение почвы водой. Весенняя верховодка часто является причиной затопления подвалов зданий.

Наличие влаги в зоне аэрации объясняется тем, что все капиллярно-пористые системы, в частности которой и является зона аэрации сложенная песками обладает способностью всасывать влагу из воздуха, удерживать и накапливать ее в своих порах. После чего накопленная влага может "стекать" из зоны аэрации в водоносный горизонт, пополняя его запасы. Эта способность возрастает с уменьшением влажности грунта, понижением его температуры и увеличением содержания в нем солей. Благодаря процессам внутригрунтовой конденсации водяных паров даже в пустынях, где влажность воздуха минимальна, под барханами образуются линзы пресной воды.

Зона аэрации расположена между поверхностью земли и уровнем грунтовых вод. Зона насыщения горных пород расположена ниже уровня грунтовых вод. Подземные воды в зоне насыщения циркулируют в виде верховодк, грунтовых, артизеанских, трещинных и вод вечной мерзлоты. Верховодки- это временные скопления подземных вод в зоне аэрации. Верховодки образуются над случайными водоупорами- линзы глин и суглинков, при инфильтрации вода задерживается и образует водоносные горизонты. Это связанно с периодом обильного снеготаяния, периодом дождей. Также это появляется вследствие низкой водопронинцаемости грунта.

Для обеспечения зоны аэрации, для дыхания корней, правильного разложения органического вещества в почве должен происходить газообмен, при котором весь объем воздух в корнеобитаемом слое будет обновляться не больше, чем за 8 суток. Для нормального роста и развития растений в почве одновременно должны содержаться в определенном соотношении воздух и вода. При недостатке воды корни растений не могут подать требуемое количество ее к листьям (почвенная засуха). В сухой почве много воздуха, вследвие чего активизируется деятельность аэробных бактерий, а это приводит к быстрому разложение органического вещества. При малом содержании воды в почве повышается концентрация почвенного раствора и растения не могут использовать его. При избытке воды, содержание воздуха уменьшается и ухудшается дыхание корней, замедляются процессы разложения органического вещества.

Таким образом, от количества воды в почве зависит степень обеспечения ею растений, содержания в почве воздуха, тепловой и питательный режим в почве, т.е. ее плодородие. Оптимальная влажность почвы для разных растений различна (табл.). чем в почве больше питательных веществ, тем выше оптимум влажности.

Плывуны и псевдоплывуны.

ПЛЫВУН (а. drift sand, floating sand, running sand, quicksand; н. Schwimmsand; ф. terrain соulant, sable aquifere; и. arena movediza, roca pastosa, fluidez de suelo) - насыщенные водой рыхлые слаболитифицированные, главным образом песчаные породы, способные растекаться и оплывать.

Различают истинный и ложный плывун. Истинный плывун состоит из тонкозернистых и пылеватых песков, а также грунтов, содержащих гидрофильные коллоиды, выполняющие роль смазки. Характерная особенность этих плывунов - большая подвижность и способность быстро переходить в плывунное состояние при незначительном механическом воздействии, особенно при сотрясении или вибрации. При малой влажности и высокой плотности плывун обладает значительной прочностью. При влажности выше некоторой критической плывуны могут течь как единое целое под действием незначительных напряжений. Истинный плывун при промерзании подвергается сильному пучению, слабо фильтрует воду, высыхая, приобретает связность. В отличие от высокодисперсных пластичных грунтов пластические свойства истинных плывунов являются временными и после снятия нагрузки постепенно исчезают. Ложные плывуны не содержат коллоидных частиц, и их плывунные свойства проявляются при значительных напорных градиентах. По мере увеличения плотности ложные плывуны часто теряют плывунные свойства.

Плывуны осложняют ведение горных работ при проходке горных выработок, строительстве котлованов, сооружений, тоннелей и др. В качестве защитных мероприятий при проходке в плывунах применяют специальные щиты, кессоны, опускные колодцы, замораживание, опережающую проходку и закрепление плывунов.

Виды воды в горных породах.

В зависимости от физического состояния, подвижности и характера связи с грунтом выделяют несколько видов воды в грунтах: химически и физически связанная, капиллярная, свободная, вода в твердом и парообразном состоянии.

Химически связанная вода входит в состав некоторых минералов, например гипса, медного купороса. Вода из таких минералов может быть удалена в большинстве случаев лишь при нагревании до 300-400 С.

Физически связанная вода удерживается на поверхности минералов и частиц грунта молекулярными силами и может быть удалена из грунта только при температуре не менее 90-120 С. Этот вид воды подразделяют на гигроскопическую и пленочную.

Гигроскопическая вода образуется вследствие адсорбции частицами грунта молекул воды. На поверхности частиц гигроскопическая вода удерживается молекулярными и электрическими силами.

Пленочная вода образует пленку поверх гигроскопической воды, когда влажность грунта становится выше его максимальной гигроскопичности. Эта вода может передвигаться от одной частицы грунта к другой.

Капиллярная вода образуется в порах грунта после насыщения их пленочной водой, заполняет поры и тонкие трещины и перемещается в них под действием капиллярных сил Капиллярную воду в порах грунта подразделяют на капиллярно-подвешенную, образующуюся в верхней части почвенного слоя, питающуюся атмосферными осадками и не связанную с нижерасположенными грунтовыми водами; капиллярно-поднятую, располагающуюся в виде капиллярной зоны над уровнем грунтовых вод и тесно с ним связанную; капиллярно-разобщенную, находящуюся в остальной толще грунта. Капиллярная вода через поверхность почвы или листья растений испаряется, играет важную роль в насыщении почв водами, режиме грунтовых вод и питании растений.

Свободная вода – наиболее подвижный и важный компонент подземных вод. Эта вода в жидком виде находится в порах и трещинах грунта и перемещается под влиянием силы тяжести и градиентов гидростатического давления.

Вода в твердом состоянии находится в грунте в виде кристаллов, прослоек и линз льда.

Вода в парообразном состоянии заполняет вместе с воздухом не занятые водой пустоты в грунтах.

Полевые испытания грунтов.

Полевые методы исследования грунтов используются при выполнении инженерно-геологических изысканий, для оценки прочностных и деформационных свойств грунтов, для получения гидрогеологических параметров, в условиях естественного залегания пород. Исследования проводятся на площадке (трассе) проектируемых или реконструируемых инженерных сооружений. Проведение работ требует наличия специальной техники и оборудования. Полевые методы исследования грунтов имеют различное предназначение и решают разнообразные задачи:

исследование физических, прочностных и деформационных свойств грунтов в условиях их естественного залегания;

получения информации о условиях залегания подземных вод, слоев пород, их генезисе;

получение гидрогеологических параметров и характеристик массива грунтов.

методами полевых исследований грунтов:

статическое зондирование;

испытание штампом;

испытание прессиометром;

испытание на срез целика грунтов;

опытно-фильтрационные работы.

Статическое зондирование относится к специальным методам получения инженерно-геологической информации. Современные возможности существенно расширили спектр информации, которую можно получить при применении этого полевого метода исследования грунтов. Значительно увеличилась глубина проведения испытания до 45 м (в зависимости от литологического состава массива).

Статическое зондирование, как метод полевых исследований грунтов, обладает широкими технологическими возможностями для выполнения пробоотбора образцов пород и подземных вод, а также специальных исследований грунтов в условиях естественного залегания.

Материалы, полученные при статическом зондировании, могут использоваться для решения следующих основных задач:

расчленение геологического разреза на отдельные слои (инженерно-геологические элементы), идентификация их по площади и по глубине;

типизация и классифицирование грунтов по составу, состоянию и свойствам;

исследование пространственной изменчивости свойств грунтов для выбора наиболее обоснованных расчётных моделей оснований;

определение показателей физико-механических свойств грунтов на основе как эмпирических интерпретационных формул, так и аналитических решений;

решение задач проектирования и расчёта оснований (например, определение расчётной нагрузки на сваю, расчётного сопротивления грунта, осадок сваи и свайного основания).

Введение

ОБЩИЕ СВЕДЕНИЯ О ГЕОЛОГИИ

Лекция 1. Геология и цикл геологических наук. Краткий обзор истории

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ЗЕМЛЕ И ЗЕМНОЙ КОРЕ

Лекция 2. Происхождение Земли (космогонические гипотезы). Строение и состав

Земли. Структура земной коры.

Лекция 3. Вещественный состав земной коры. Минералы. Горные породы

ЭКЗОГЕННЫЕ ГЕОЛОГИЧЕСКИЕ ПРОЦЕССЫ

Лекция 4. Выветривание (гипергенез). Геологическая деятельность ветра.

Геологическая деятельность поверхностных и подземных вод

Лекция 5. Геологическая деятельность ледников.

Геологическая деятельность морей и океанов

Эндогенные геологические процессы

Лекция 6. Магматизм. Метаморфизм

Лекция 7. Движения земной коры. Тектонические структуры. Землетрясения

ИСТОРИЯ РАЗВИТИЯ ЗЕМЛИ

Лекция 8. Геохронология и методы реконструкции геологического прошлого.

Развитие Земли в докембрии и палеозое

Лекция 9. Развитие Земли в мезозое и кайнозое. Природа четвертичного периода

МИНЕРАЛЬНЫЕ РЕСУРСЫ

Лекция 10. Месторождения полезных ископаемых и закономерности их

размещения. Рациональное недропользование

БЕЛОРУССКИЙ ГОСУДАРСТЕННЫЙ УНИВЕРСИТЕТ

ГЕОГРАФИЧЕСКИЙ ФАКУЛЬТЕТ

кафедра динамической геологии

КУРС ЛЕКЦИЙ

ВВЕДЕНИЕ В СПЕЦИАЛЬНОСТЬ

ОБЩИЕ СВЕДЕНИЯ О ГЕОЛОГИИ

Лекция 1. Геология и цикл геологических наук. Краткий обзор истории

Геология и цикл геологических наук.

Геология (греч. «гео» - земля, «логос» - учение) - одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности. Современная геология использует новейшие достижения и методы ряда естественных наук - математики, физики, химии, биологии, географии. Значительный прогресс в указанных областях наук и геологии ознаменовался появлением и развитием важных пограничных наук о Земле - геофизики, геохимии, биогеохимии, кристаллохимии, палеогеографии, позволяющих получить данные о составе, состоянии и свойствах вещества глубоких частей земной коры и оболочек Земли, расположенных ниже. Особо следует отметить многостороннюю связь геологии с географией (ландшафтоведением, климатологией, гидрологией, гляциологией, океанографией) в познании различных геологических процессов, совершающихся на поверхности Земли. Взаимосвязь геологии и географии особенно проявляется в изучении рельефа земной поверхности и закономерностей его развития. Геология при изучении рельефа использует данные географии, так же как и география опирается на историю геологического развития и взаимодействия различных геологических процессов. Вследствие этого наука о рельефе - геоморфология фактически является также пограничной наукой.

По геофизическим данным в строении Земли выделяется несколько оболочек: земная кора, мантия и ядро Земли. Предметом непосредственного изучения геологии являются земная кора и подстилающий твердый слой верхней мантии - литосфера (греч. «литое» - камень). Сложность изучаемого объекта вызвала значительную дифференциацию геологических наук, комплекс которых совместно с пограничными науками (геофизикой, геохимией и др.)

позволяет получить освещение различных сторон его строения, сущность совершающихся процессов, историю развития и др.

Одним из нескольких основных направлений в геологии является

изучение вещественного состава литосферы: горных пород, минералов, химических элементов. Одни горные породы образуются из магматического силикатного расплава и называются магматическими или изверженными; другие - путем осаждения и накопления в морских и континентальных условиях и называются осадочными; третьи - за счет изменения различных горных пород под влиянием температуры и давления, жидких и газовых флюидов и называются метаморфическими.

Изучением вещественного состава литосферы занимается комплекс геологических наук, объединяющихся часто под названием геохимического цикла. К ним относятся: петрография (греч. «петроо - камень, скала, «графе» - пишу, описываю), или петрология - наука, изучающая магматические и метаморфические горные породы, их состав, структуру, условия образования, степень изменения под влиянием различных факторов и закономерность распределения в земной коре. Литология (греч. «лито» - камень) - наука, изучающая осадочные горные породы. Минералогия - наука, изучающая минералы - природные химические соединения или отдельные химические элементы, слагающие горные породы. Кристаллография и кристаллохимия занимаются изучением кристаллов и кристаллического состояния минералов. Геохимия - обобщающая синтезирующая наука о вещественном составе литосферы, опирающаяся на достижения указанных выше наук и изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на ее поверхности. С рождением изотопной геохимии в геологии открылась новая страница в восстановлении истории геологического развития Земли.

Изучение вещественного состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические методы - непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. Наиболее глубокая, пока единственная в мире, Кольская скважина достигла всего лишь 12,5 км. Но более глубокие горизонты земной коры и прилежащей части верхней мантии также доступны непосредственному изучению. Этому способствуют извержения вулканов, доносящие до нас обломки пород верхней мантии, заключенные в излившейся магме - лавовых потоках. Такая же картина наблюдается в алмазоносных трубках взрыва, глубина возникновения которых соответствует 150-200 км. Помимо указанных прямых методов в изучении веществ литосферы широко применяются оптические методы и другие физические и химические исследования - рентгеноструктурные, спектрографические и др. При этом широко используются математические методы на основе ЭВМ для оценки достоверности химических и спектральных анализов, построения рациональных классификаций горных пород и минералов и др. В последние десятилетия применяются, в том числе и с помощью ЭВМ,

экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-го степени, представить облик поверхности нашей планеты в будущие миллионы лет.

Следующим направлением геологической науки является динамическая геология, изучающая разнообразные геологические процессы, формы рельефа земной поверхности, взаимоотношения различных по генезису горных пород, характер их залегания и деформаций. Известно, что в ходе геологического развития происходили многократные изменения состава, состояния вещества, облика поверхности Земли и строения земной коры. Эти преобразования связаны с различными геологическими процессами и их взаимодействием. Среди них выделяются две группы: 1) эндогенные (греч. «эндро - внутри), или внутренние, связанные с тепловым воздействием Земли, напряжениями, возникающими в ее недрах, с гравитационной энергией и ее неравномерным распределением; 2) экзогенные (греч. «экзос* - снаружи, внешний), или внешние, вызывающие существенные изменения в поверхностной и приповерхностной частях земной коры. Эти изменения связаны с лучистой энергией Солнца, силой тяжести, непрерывным перемещением водных и воздушных масс, циркуляцией воды на поверхности и внутри земной коры, с жизнедеятельностью организмов и другими факторами. Все экзогенные процессы тесно связаны с эндогенными, что отражает сложность и единство сил, действующих внутри Земли и на ее поверхности.

В область динамической геологии входит геотектоника (греч. «тектос» - строитель, структура, строение) - наука, изучающая структуру земной коры и литосферы и их эволюцию во времени и пространстве. Частные ветви геотектоники составляют: структурная геология, занимающаяся формами залегания горных пород; тектонофизика, изучающая физические основы деформации горных пород; региональная геотектоника, предметом изучения которой служит структура и ее развитие в пределах отдельных крупных регионов земной коры. Важными разделами динамической геологии являются сейсмология (греч. «сейсмос - сотрясение) - наука о землетрясениях и вулканология, занимающаяся современными вулканическими процессами.

История геологического развития земной коры и Земли в целом является предметом изучения исторической геологии, в состав которой входит стратиграфия (греч. «стратум» - слой), занимающаяся последовательностью формирования толщ горных пород и расчленением их на различные подразделения, а также палеогеография (греч. «паляйос - древний), изучающая физико-географические обрисовки из поверхности Земли в геологическом прошлом, и палеотектоника, реконструирующая древние структурные элементы земной коры. Расчленение толщ горных пород и установление относительного геологического возраста слоев невозможны без изучения ископаемых органических остатков, которым занимается палеонтология, тесно связанная как с биологией, так и с геологией. Следует подчеркнуть, что важной геологической задачей является изучение геологического строения и развития определенных участков земной коры, именуемых регионами и обладающих какими-то общими чертами структуры и эволюции. Этим занимается обычно региональная геология, которая практически использует все перечисленные ветви геологической науки, а последние, взаимодействуя между собой, дополняют друг друга, что демонстрирует их тесную связь и неразрывность. При региональных исследованиях широко используются дистанционные методы, когда наблюдения осуществляются с вертолетов, самолетов и с искусственных спутников Земли.

Косвенные методы познания, в основном глубинного строения земной коры и Земли в целом, широко используются геофизикой - наукой, основанной на физических методах исследования. Благодаря различным физическим полям, применяемым в подобных исследованиях, выделяются магнитометрические, гравиметрические, электрометрические, сейсмометрические и ряд других методов изучения геологической структуры. Геофизика тесно связана с физикой, математикой и геологией.

Одна из важнейших задач геологии - прогнозирование залежей минерального сырья, составляющего основу экономической мощи государства. Этим занимается наука о месторождениях полезных ископаемых, в сферу которой входят как рудные и нерудные ископаемые, так н горючие - нефть, газ, уголь, горючие сланцы. Не менее важным полезным ископаемым в наши дни является вода, особенно подземная, происхождением, условиями залегания, составом и закономерностями движений которой занимается наука гидрогеология (греч. «гидер» - вода), связанная как с химией, так и с физикой и, конечно, с геологией.

Важное значение имеет инженерная геология - наука, исследующая земную кору в качестве среды жизни и разнообразной деятельности человека. Возникнув как прикладная ветвь геологии, занимающаяся изучением геологических условий строительства инженерных сооружений, эта наука в наши дни решает важные проблемы, связанные с воздействием человека на литосферу и окружающую среду. Инженерная геология взаимодействует с физикой, химией, математикой и механикой, с одной стороны, и с различными дисциплинами геологии - с другой, с горным делом и строительством - с третьей. За последнее время оформилась как самостоятельная наука геокриология (греч. «криос - холод, лед), изучающая процессы в областях развития многолетнемерзлых горных пород «вечной мерзлоты», Занимающих почти 50% территории России. Геокриология тесно связана с инженерной геологией.

С начала освоения космического пространства возникла космическая геология, или геология планет. Освоение океанских и морских глубин привело к появлению морской геологии, значение которой быстро возрастает в связи с тем, что уже сейчас почти треть добываемой в мире нефти приходится на дно акваторий морей и океанов.

Разработка теоретических проблем геологии сочетается с решением ряда народнохозяйственных задач: 1) поиск и открытия новых месторождений различных полезных ископаемых, являющихся основной базой промышленности и сельского хозяйства; 2) изучение и определение ресурсов подземных вод, необходимых для питьевого и промышленного водоснабжения, а также мелиорации земель; 3) инженерно-геологическое обоснование проектов возводимых крупных сооружений и научный прогноз изменения условий после окончания их строительства; 4) охрана и рациональное использование недр Земли.

Познание всех закономерностей эволюции Земли, ее происхождения и развития исключительно важно в контексте общего материалистического понимания природы, в тех философских построениях, которые отражают единство мира. В этом заключается общенаучное значение геологии.

Краткий обзор истории.

Геологическая наука со времени своего зарождения претерпела длительную эволюцию. Корни геологии уходят в далекое прошлое. Человек начал изучать Землю на заре своей сознательной жизни. Древнейшим разделом геологии считается учение о полезных ископаемых. О времени зарождения этой науки говорят находки медных изделий, появившихся в Египте и Передней Азии в IV тысячелетии до н.э. А золото появилось еще раньше. С разработкой руд возникла необходимость распознавания и изучения рудных минералов и полезных камней. Так зарождается минералогия (лат. «минера» - руда).

Дошедшие до нас сведения о трудах ученых древности имеют в основном лишь историческое значение, так как в них здравые мысли переплетаются с вымыслом и легендами. Однако и здесь мы встречаем научные идеи, основывающиеся на фактах.

Ценными являются исследования Аристотеля (384-322 гг. до н.э.), который представил первые астрономические доказательства шарообразности Земли, и работы Аристарха Самосского (III в. до н.э.), предвосхитившего гелиоцентрическую систему мира Коперника, жившего на 18 веков позже его.

Произведения Геродота (V в. до н.э.) и Пифагора (571- 497 гг. до н.э.) содержат богатый фактический материал о вулканах, работе рек, образовании дельты р. Нила, о колебаниях уровня моря.

Развитие торговли и общения между народами привело к зарождению геодезии и географии. 6000 лет тому назад в Египте применяли бурение при постройке пирамид. В Китае изобретен компас (III в. до н.э.).

В эпоху средневековья, в период господства церковно-феодальной идеологии, развитие естествознания было замедлено.

Значительные успехи в развитии минералогии были достигнуты на Востоке. Работы врача и философа Абу-Али Ибн-Сины - Авиценны (980-1037) и ученого из Хорезма Ал-Бируни (972-1048) внесли большой вклад в развитие геологии. Авиценна создал первую классификацию минеральных тел, общепринятую в Европе до XVIII в., а Ал-Бируни первый среди ученых Среднего Востока высказался в пользу гелиоцентрической системы мира и определил длину окружности земного шара.

Серьезные исследования мира начались в эпоху Возрождения (конец XV-начало XVI в.). Это был период перехода от ремесла к мануфактуре. Ему предшествовали Великие географические открытия (открытие Америки в 1492 г., путешествие Васко да Гамы в Индию в 1497 г., кругосветное путешествие Магеллана в 1519-1522 гг.).

Крупным ученым эпохи Возрождения следует назвать Леонардо да Винчи (1452-1519). Наряду с гениальными работами в других областях знаний Леонардо да Винчи внес свой вклад в развитие геологии. Он отверг идею о библейском потопе и божественном сотворении мира. Окаменелости, встречаемые в горных породах, он считал свидетельством перемещения суши и моря.

Немецкий ученый Георг Бауэр - Агрикола (1494-1555) изучал залегание рудных тел. Известны его работы по технике горного дела. Работа Н. Коперника (1473-1543) «Об обращении небесных кругов» положила начало освобождению науки от закрепощения религией.

Становление научной геологии началось с середины XVIII в. Одним из первых М. В. Ломоносов (1711-1765) ввел принцип актуализма: изучение геологических процессов прошлого путем познания современных явлений. Его высказывания о геологических процессах до настоящего времени поражают глубиной мысли и правильностью представлений о природе. М.В. Ломоносов по праву считается одним из основоположников научной геологии. Широко известны его работы: «О слоях земных», «Слово о рождении металлов от трясения земли», «Первые основы металлургии или рудных тел».

М.В. Ломоносов впервые правильно определил роль двух факторов, действующих на Земле: сил внешних (ветер, вода, лед) - извне рожденных, и сил внутренних, связанных с теплотой земного шара, - изнутри рожденных. Оценивая работу внешних и внутренних геологических факторов, создающих и изменяющих формы земной поверхности, М.В. Ломоносов на первое место ставит внутренние силы Земли, которым обязаны своим происхождением не только высокие горы, но и целые материки и глубины морских пучин.

В конце XVIII в. появляются два враждующих направления в науке: нептунисты, вдохновителем которых был профессор Фрейбергской академии А. Вернер, и плутонисты, главой которых являлся шотландский геолог Д. Геттон.

Нептунисты считали, что в основе всех изменений Земли лежит действие внешних сил (вода, ветер, лед, море), плутонисты - действие внутренней энергии (вулканизм, землетрясения). Обе школы подходили к объяснению развития Земли односторонне, и концепции их представителей были неправильны.

Важная роль в развитии геологических представлений о происхождении Земли принадлежит И. Канту, немецкому философу, и П. Лапласу, французскому математику и астроному. Они правильно подошли к решению вопроса о происхождении Земли и Солнечной системы, освободив его от идеи божественного сотворения. В основе их концепции лежит идея развития, эволюции.

Большое значение в развитии геологии имела работа английского геолога Ч. Лайеля (1797-1875), вышедшая в свет в 1833 г. под названием «Основы геологии». Чарлз Лайель объяснял развитие Земли как результат длительного изменения материи. В своем труде он приводит детальное описание геологических процессов внешней и внутренней динамики. Ч. Лайель, так же как и М.В. Ломоносов, исходил из принципа актуализма: настоящее - ключ к познанию прошлого. Правда, у него были и ошибки. В частности, он был далек от представления об эволюционном развитии Земли, полагая, что она просто изменяется случайным образом.

Эволюционные идеи в геологии окончательно утвердились после выхода работы Ч. Дарвина «Происхождение видов путем естественного отбора или сохранение благоприятствуемых пород в борьбе за жизнь» (1859).

В XIX в. шло дальнейшее накопление фактов. Большой фактический материал появляется благодаря усиленным поискам и разведке полезных ископаемых, которые требовались во все возрастающих масштабах в связи с бурным развитием промышленности и строительства. Это обусловило дальнейшее развитие геологической науки. Значительный вклад был сделан русскими учеными, которые стали подходить к объяснению различных геологических процессов с материалистической точки зрения

В 1882 г. в Петербурге был создан Геологический комитет - руководящий центр по изучению геологии России в дореволюционное время.

Среди русских ученых, внесших большой вклад в развитие геологии, в первую очередь следует назвать А. П. Карпинского, которого по праву считают отцом русской геологии. Им написано около 500 научных работ по различным вопросам геологии, палеонтологии, тектоники, стратиграфии, петрографии и другим разделам. И. В. Мушкетов положил начало сейсмотектоническим исследованиям. В. А. Обручев разработал многие важные вопросы: геологии рудных месторождений, неотектоники, четвертичных отложений, геоморфологии и географии. Он считается крупным исследователем Сибири и Центральной Азии. А. П. Павлов является основоположником учения о четвертичных отложениях, видным палеонтологом и основателем московской школы геологов. Е. С. Федоров - известный кристаллограф, создатель кристаллохимического анализа и теодолитного гониометра для измерения гранных углов кристаллов. Труды В. И. Вернадского по геохимии, биогеохимии и радиогеологии всемирно известны.

Имена А. Е. Ферсмана, В. О. Ковалевского, А. Д. Архангельского, В. М. Севергина, Н. И. Кокшарова, П. В. Еремеева, Ф. Ю. Левинсона-Лессинга, А. Н. Заварицкого и многих других вошли в историю как имена основоположников современной геологии.

За последние десятилетия в нашей стране были открыты крупнейшие месторождения калийных солей (Соликамск), апатито-нефелиновых, медно-никелевых и железных руд (Кольский п-ов, Карелия), алмазов (Сибирь и Архангельская обл.), железорудные залежи Курской магнитной аномалии, крупнейшие месторождения нефти и газа (Западная Сибирь) и ряд других полезных ископаемых. К числу их следует отнести уникальное медно-никелевое месторождение с платиноидами в районе г. Норильска.

К настоящему времени в нашей стране создана мощная минерально-сырьевая база, обеспечивающая главнейшими полезными ископаемыми народное хозяйство.

СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О ЗЕМЛЕ И ЗЕМНОЙ КОРЕ ГеологияДокумент

... лекций Кол-во часов Формы текущего контроля успеваемости 1 2 3 4 Геология 1. Геология как наука . Предмет и задачи геологии . Цикл геологических наук ...

  • Антропогенная геология

    Программа дисциплины

    ... геологии . Положение антропогенной геологии в системе геологических наук . Лабораторная работа №1. Связи антропогенной геологии с другими науками геологического цикла ... . – 182 с. Трофимов В.Т. Лекции по экологической геологии . Лекции 6-10 /Уч. пособие. – ...